
Rexx Arithmetic

 – inspiration for a Standard

Mike Cowlishaw

http://speleotrove.com

mfc@speleotrove.com 10

rexxsy16

Rexx Symposium – 31 August 2016

Overview

 Rexx arithmetic

 Status in 2001

– Software

– Hardware

– Standards

 The IEEE 754 standard 2001–2008

– Current status

 Questions? 2

Why is decimal arithmetic
important?

 Decimal arithmetic represents numbers in base

 ten, so uses the same number system that

 people have used for thousands of years

 Pervasive for financial and

 other commercial applications;

 often a legal requirement

 55% of numeric data in

 commercial databases are

 decimal (and a further 43% are integers)
3

0.1 = 1/10 = 1 x 10 = 1E-1

= 0.0001100110011...

= 1/16 + 1/32 + 1/256 + 1/512 + 1/4096 +

 1/8192 + ...

Decimal:

Binary:

-1

The trouble with binary

4

Repeated division by 10; what users expect:

 Decimal

 9

 0.9

 0.09

 0.009

 0.0009

 0.00009

 0.000009

 9E-7

 9E-8
5

Repeated division by 10; what they get:

 Decimal float (binary)

(binary) 9 9

 0.9 0.9

 0.09 0.089999996

 0.009 0.0090

 0.0009 9.0E-4

 0.00009 9.0E-5

 0.000009 9.0E-6

 9E-7 9.0000003E-7

 9E-8 9.0E-8
6

Where it costs real money …

 Add 5% sales tax to a $ 0.70 telephone call,
 rounded to the nearest cent

 1.05 x 0.70 using binary double is exactly

 0.73499999999999998667732370449812151491641998291015625

 (should have been 0.735)

 rounds to $ 0.73, instead of $ 0.74

7

Rexx arithmetic, 1979-1999

8

Rexx 1.0 [May 1979]

 'Minimal' arithmetic – minimum necessary to be

 useful (loop counters, etc.)

 Integers only

 This was a 'holding' implementation, while other

 parts of the interpreter were designed and

 implemented

9

Rexx 1.10 [January 1980]

 Plain decimal arithmetic (no exponents)

 Up to 9 digits after the decimal point

 Precision of result is determined by the more

 precise of the two terms involved in an operation

 Worked well, but results could often surprise

8/3 2 8/3.00 2.67

10

Rexx 2.50 – the 'new'
arithmetic [May – July 1981]

 Developed primarily by e-mail

 Initially controversial (because it changed the

 behaviour of existing programs)

 Widely discussed and researched (REX [sic] was

 in use in 43 countries by then)

 Essentially the same as the arithmetic in "The

 Rexx Language" book (1985 & 1990)
11

The choice of arithmetic

 The principle:

 "REX arithmetic attempts to carry out the usual

 operations in as 'natural' way as possible. What

 this really means is the rules which are followed

 are those which are conventionally taught in

 schools and colleges."

 (7 Oct. 1981)

12

Rexx arithmetic

 Full-function finite decimal floating point arithmetic

 Preserves significand length, etc. For example,

 1.23 + 1.17 gives 2.40 (not 2.4)

 Integers are a seamless subset of all numbers

 Precision is user-selectable (numeric digits)

 Exponents from E-999999999 through E+999999999 13

ANSI (X3-J18) refinements

 Trigger to exponential notation after 0.000001

 (not dependent on DIGITS setting)

 LostDigits condition (raised if input data too

 precise)

 Input data rounded to DIGITS (not DIGITS+1)

 Published as ANSI X3.274-1996 (see

 www.rexxla.org), refined through 1999
14

Decimal arithmetic in 2001

15

Decimal fixed scale numbers

 Example: 1234.50

 Integer and scale

 123450 2

16

Status in 2001 (software)

 C/C++, PL/I, etc: 15-31 digit fixed-scale decimal

(e.g., 2 digits after the decimal point)

 COBOL: 31 digit fixed-scale decimal

 Databases: 31 or 38 digits, various arithmetics

 Java: unlimited finite floating point decimal (by Sun

 and IBM)

 C#, VB, etc. (Microsoft .Net platform): 28 digit

 partly-floating-point decimal

 Rexx family: unlimited finite floating point decimal

17

Status in 2001 (hardware)

 z-Series (IBM S/390): decimal integer instructions

 (Store-to-Store) used for fixed-scale arithmetic

 Most non-RISC processors (Intel x86, Motorola

 68xxx, etc.) had decimal adjust instructions to aid

 decimal integer arithmetic

 In general, decimal arithmetic had to be carried

 out in software; 100x to 1000x slower than

 hardware (or worse)
18

Standards in 2001

 ANSI X3.274-1996 (Programming Language

 REXX)

– floating-point arbitrary precision decimals

 IEEE 854-1987 (Radix-Independent Floating-

 Point Arithmetic)

– generalization of IEEE 754, to allow for base-10

– fixed precision

19

Decimal representations

 Example: 1234.50

 Traditional fixed-scale numbers: integer and scale

 Floating point : coefficient and exponent

– many advantages in the coefficient being an integer

123450

–2

2

123450

20

Rationalizing decimal arithmetic

 General Decimal Arithmetic specification:

– Arithmetic and encodings, suitable for hardware or

 software implementation

– Core floating point and integer operations based on ANSI

 X3-274 (Rexx)

– Specification extended to comply with IEEE 854

 Open specification; (still) available on the web
21

IEEE 754 revision, 2001–2008

 Proposal based on Rexx arithmetic

 UC Berkeley key supporters (Prof. Kahan, etc.)

 Refined to allow efficient hardware (registers etc.)

 By 2005, agreed decimal formats and arithmetic

 Ballot process took another three years …

22

64-bit Decimal encoding

 Sign, exponent, and coefficient encoded:

 First bit is sign

 Combination field indicates NaN or Infinity, or holds

 first digit of coefficient and ~two bits of exponent

 Third field has further 8 bits of exponent

 Fourth field has 3x10 bits (3x5 digits) of coefficient

 (densely packed decimal; DPD)

8 bits 1

23

5 bits 5 bits 50 bits

IEEE 754 decimal formats

size (bits) digits exponent range

32 7 -95 to +96

64 16 -383 to +384

128 34 -6143 to +6144

24

(range is always larger than

 same-size binary format)

Benefits of the new types

 Hardware performance

• Individual operations up to 150x faster than

 software packages

• Applications up to 2x faster overall

• Almost all commercial and financial

 applications get a performance boost

25

Power6 processor core layout

26

DFPU
(Decimal

Floating-

Point Unit)

Benefits of the new types [2]

 Standard data types for decimal bring all the

 benefits that binary applications enjoy:

• known, standard, formats, so no conversions (less

 checking needed at interfaces)

• faster processing (especially with hardware)

• well-defined arithmetic, rounding rules, etc.

• safer and easier-to-write applications

27

IEEE 754 revision, 2015 – 2018?

 Start point IEEE 754-2008 (ISO/IEC 60559:2011)

 Clarifications and minor additions only

 No changes to decimal arithmetic (so far…)

 New Chairman (David Hough); the Editor is still

 Mike Cowlishaw

28

Summary

 Decimal data and arithmetic predominate in

 commercial calculation

 IEEE 754-2008 includes decimal floating-point

 arithmetic, based on Rexx arithmetic

 Now well-established, in hardware and software

 New revision of IEEE 754 is in progress

29

Questions?

http://speleotrove.com/decimal

30

31

