
1

Pedro Vera

Automating Critical IMS Operations

with the REXX SPOC API

®

San Jose, CA Aug. 30, 2016

Biography:

I was an MVS system programmer for several years and then in
MVS tools support for several years.

Now I work in IMS development, working on ISPF oriented
programs.

22

About Pedro Vera

Frequent contributor to social media
•Ibmmainframes.com - (not part of IBM)
•ibmmainframeforum.com - (not part of IBM)
•TSO-REXX list, ISPF-L list
•Linkedin group moderator: Programming in Rexx

I convinced my IBM colleagues to
provide additional rexx support:

 System REXX,
 SDSF REXX API,
 REXX interface for RACF,
 Inline REXX for ISPF panels,
 Inline REXX for ISPF skeletons,
 Trace highlighting

Hello, my name is Pedro Vera
I am a long time IBMer, with about 30 years of working with TSO REXX.

I worked for 15 years in the IMS development group.
After creating the REXX SPOC API for IMS and getting great
customer feedback, I was able to convince my IBM colleagues to provide
Additional rexx support, including:
1. System REXX,
2. the SDSF REXX API,
3. the REXX interface for RACF,
4. inline REXX for ISPF panels,
5. inline REXX for ISPF skeletons.
6. Trace highlighting

Currently, I am working as a developer for a product called DB2 Administration Tool, which uses rexx
heavily.

3

Agenda

CSL and OM overview
Intro to REXX
How to issue operator commands
How to check the response
Sample programs.

I hope to give you enough information so you can go back and try
right away.

4

IMSplex

 SPOC or AOP can
 specify routing for
 any command

 OM routes command
 to one or more IMSs

 Each IMS responds
 to OM

 OM consolidates
 responses for SPOC

IMS allows multiple IMS systems to work together as a single image, sharing
databases and / or message queues. This is called an IMSplex. The IMS
Common Service Layer (CSL) is a collection of address spaces that provide the
infrastructure needed for systems management tasks. This includes Operations
Manager (OM), Resource Manager (RM), and Structured Call Interface (SCI).

The IMS CSL provides the following:
• Improved systems management
• A single system image
• Ease of use through a single point of control
• Shared resources across all IMS systems

To simplify systems management, the Operations Manager Application
Programming Interface (OM API) was added. It allows operator commands to be
entered and the responses to be retrieved.

The IMS operator can issue commands to any or all of the IMS subsystems in the
IMSplex with a program that utilizes the OM API. That is, the IMSplex can be
managed from a single place! This 'Single Point of Control' is referred to as a
SPOC.

The OM and SCI address spaces are required in order to use Single Point of
Control services.

5

Creating an IMSplex

Started tasks (SCI, OM, RM, and IMS) must have the same
name in their startup parameters:

 IMSPLEX(NAME=PLEX1) /* Group name=CSLPLEX1 */

Others may participate by using
CSLSCREG macro to register
as part of the IMSplex.

S
C
I

IMS
Control
Region

Structured
Call

Interface

SCI

Operations
Manager

(OM)

SCI

S
C
I

IMS
Control
Region

S
C
I

IMS
Control
Region

There can be multiple IMSplexes on the system. They are
identified by the IMSPLEX parameter in the startup parms.
Each component has to specify the same name.

CSLOIxxx
CSLSIxxx
CSLRIxxx

The REXX program has to specify the same IMSplex name.

6

Operations Manager - API
OM provides an API for

 Automated operations (AO) clients
• Clients through which commands are entered to OM
and then to the command processing client

• Command may originate from an operator, be received
from a network client, or be generated by an automation
process

 Command processing (CP) clients
• Clients which process commands entered from other
address spaces
• IMS is a command processing client

All OM services are invoked by CSLOMxxx macros
• Macro coding and use is described in CSL Guide and
Reference

IMS

REXX
SPOC API

API – Application Programming Interface

They provided an assembler API - I provided a REXX API to that
invokes a subset of the assembler API.

The OM API allows clients to issue IMS operator commands and to
get the command responses. New commands (type 2) can only be
issued from these new clients. Many of the old commands (type 1)
can also be issued from the new clients.

The OM API also allows other vendors to write command processing
clients.
Macros are described in a book names Common Service Layer
Guide and Reference.

7

Single Point Of Control (SPOC)

The SPOC is a client of OM

May or may not be on the same OS as OM
Must be on same OS as SCI
Uses SCI to communicate with OM

OM provides security checking
TSO userid is used to determine RACF authorization
RACF and/or Command Authorization Exit

Structured
Call

Interface

SCI

Operations
Manager

(OM)

SCI

REXX
SPOC API

S
C
I

IMS
Control
Region

S
C
I

IMS
Control
Region

S
C
I

IMS
Control
Region

The Single Point of Control is a client of the Operations Manager.

8

‘Single’ Does Not Mean ‘Only’

There can be several SPOCs active at any time.

REXX
SPOC API

VENDOR
SPOC program

Structured
Call

Interface

SCI

Operations
Manager

(OM)

SCI

S
C
I

IMS
Control
Region

S
C
I

IMS
Control
Region

S
C
I

IMS
Control
Region

A Single Point of Control (SPOC) means that you can issue
commands to all members of an IMSplex at one time. There can be
any number of SPOC users active at any time. There is no practical
limit to the number of SPOC users.

A SPOC can be a TSO SPOC user, a workstation running the IMS
Control Center, a rexx program using the REXX SPOC API, or a
vendor product that was written to use the OM API. SCI and OM do
not know the difference between the various clients. They receive a
command and return a command response. I will talk about the
REXX SPOC API in the next session.

The OM API also allows other vendors to write command processing
clients.

9

Commands Supported

• Type-1 commands existed prior to V8. Many can
be issued through the OM API.

• Type-2 commands – only supported in OM API
environment.

Not all type-1 commands are supported by the OM API. Some
abbreviations for commands are not accepted. See Table 15 of
Command Reference for list of supported commands.

Type-1 commands existed prior to V8. Type-2 commands will be
enhanced to support new function. Type-1 will not normally be
enhanced except as needed on a case-by-case basis.

10

New IMS Commands
IMS now supports new operator commands.

DELETE

INITIATE

QUERY

TERMINATE

UPDATE

The new commands are ‘Type-2’ commands and can only
be issued through the OM API.

S
C
I

IMS
Control
Region

Structured
Call

Interface

SCI

Operations
Manager

(OM)

SCI

S
C
I

IMS
Control
Region

S
C
I

IMS
Control
Region

As part of Operations Management enhancements, new commands
were added. They support new resources such as LE, OLR, and
OLC. Some also support existing resources such as transactions,
database, and area.

11

Support for Type 1 Commands

Previous commands are ‘Type-1’ commands. Most commands
are supported through the OM API.

Do not need a command recognition character.

Only certain spellings are accepted through OM API.

DIS ACT Okay
DIS A not okay

IMS

Table 14 in the command reference has a list of supported commands
and valid short forms.

12

Command Security

Commands issued through the OM API are controlled by RACF
profiles.

OPERCMDS class

Profiles contain the IMSplex name, the command verb, and the
resource type.

If your IMSplex name is PLX04 and you want to
issue an ACTIVATE NODE command, your userid
needs UPDATE authority to:

IMS.CSLPLX04.ACT.NODE

Appendix I of the Command Reference has a table of the resource
names.

Appendix I of V8 Command Reference is not clear. It has been
clarified in the V9 manual. The second node of the resource name is
the name of the IMSplex. You should use the same value as is
displayed in the QRY IMSPLEX command. The IMSplex name
consists of a 'CSL' prefix and a 1-5 character value defined by the
customer.
More about command security…

13

Command Security

Profiles for display or query commands need READ authority.

Profiles for commands that change an IMS resource need UPDATE
authority.

Reduce the number of RACF profiles by using wildcards:
IMS.CSLPLX04.DIS.*

You probably need an all-encompassing profile:
 IMS.**

Commands like BROWSE, DISPLAY or QUERY need RACF ‘read’
authority. Other commands, such as those that change a resource
need RACF ‘update’ authority to be issued.

Profiles with wildcards will protect several variations of commands.

Agenda

CSL and OM overview
Intro to REXX
How to issue operator commands
How to check the response
Sample programs.

14

15

Why a REXX SPOC?

Many operator automation programs are written in REXX
and run in a NetView environment.

Rexx is the defacto standard for automation.

Rexx is easy to write and debug.

The REstructured eXtended eXecutor language is a versatile, easy to
use structured programming language available on numerous
platforms.

It is a general purpose programming language like PL/I, or C, and is
particularly suitable for:

• Command procedures
• Installation routines
• Application front ends

• User-defined macros (such as editor macros)
• Prototyping
• "Personal computing."

More about the REXX SPOC API.

16

REXX SPOC API

• Runs under TSO or NetView

• May or may not be on the same MVS as OM

• Uses SCI to communicate with OM

• Provides "host command environment" in which IMS
commands may be entered to one or more members of
an IMSplex

• Saves command responses to a REXX "stem variable"
by XML statements.

Since it is REXX, it can do other things as well.

 Provides "host command environment" in which IMS commands may be
entered to one or more members of an IMSplex

Agenda

CSL and OM overview
Intro to REXX
How to issue operator commands
How to check the response
Sample programs.

17

REXX SPOC API and OM

Functions are provided that utilize SCI and OM services.

REXX
1.Setup
2.Issue command

3.Process response
4.exit

Operations
Manager

You can issue a command

Then process the response when it returns.

18

19

REXX SPOC API Sample Program
 1 /* rexx */
 2 parse upper arg theIMScmd
 3 Address LINK 'CSLULXSB'
 4 If rc = 0 Then Do
 5 Address IMSSPOC
 6 "IMS plex1"
 7 "ROUTE imsb"
 8 "CART test12"
 9 "WAIT 3:00"
10 theIMScmd
11 results = cslulgts('resp.','test12','3:15')
12 Say 'imsrc='imsrc 'imsreason='imsreason
13 If resp.0 /= '' Then Do
14 Say resp.0' lines of output'
15 Do indx = 1 To resp.0
16 Say resp.indx
17 End
18 End
19 "END"
20 End

This is sample that you can refer to as we go. This is similar
to how the normal CONSOLE and GETMSG work. I used
them as models.

I will show smaller snippets from this program and explain
some of the key points in more detail.

20

Host Command Environment
Program CSLULXSB sets up the host command environment
for rexx. This environment has several subcommands.

Use the 'Address' command to send command processing to
particular environments.

Example:

 Address LINK "CSLULXSB"

 Address IMSSPOC

 “host command"

The rexx host command environment is setup by program
CSLULXSB. After it is issued as a program, the IMSSPOC
environment is available to the rexx program.

Host commands are typically quoted strings and passed
directly to the host command processor.

21

Setting Preferences

The REXX SPOC API has concepts similar to the ISPF
SPOC preferences panel:

Address IMSSPOC
 "IMS plex1" /* sets IMSplex name */
 "ROUTE ims3" /* sets name for explicit
 route to IMS system */
 "WAIT 3:00" /* sets OM timeout value */

 /* program logic here */

 "END" /* clean up */

Commands IMS, ROUTE, WAIT, CART, and END are supported
and perform specific local functions. Anything else is passed to SCI
as a command to be performed.

IMS - sets the name of the IMSplex. required.

ROUTE - sets the name(s) of the command processors that the will
process the command. optional

WAIT - sets the maximum timeout valued for OM to wait for a
command response. If the time is reached, OM will return with a
'timed out' return code rather than with complete command response
information. If multiple systems are involved, it will return the
response from those that responded. optional

END - cleans up control blocks. optional

22

OM Wait time
1. Command gets routed to all IMSes

2. OM waits for each IMS to respond

3. If any IMS does not respond, OM will wait for a
response until the timeout value reached.

Structured
Call

Interface

SCI

Operations
Manager

(OM)

SCI

S
C
I

IMS
Control
Region

S
C
I

IMS
Control
Region

S
C
I

IMS
Control
Region

REXX
SPOC API

WAIT - sets the maximum timeout valued for OM to wait for a
command response. If the time is reached, OM will return with a
'timed out' return code rather than with complete command response
information. If multiple systems are involved, it will return the
response from those that responded.

If one IMS system does not respond when the time expires, OM will
send the two responses and also a return code indicating the missing
response.

23

Keeping Track of Commands

The CART host command is used to name the response token.
Function CSLULGTS is used to retrieve the command response

Address IMSSPOC

.

"CART QRYTHETRAN"

"QRY TRAN NAME(V*)"

abc = CSLULGTS("out.","QRYTHETRAN","2:30")

This is another snippet of the program, just further down.

The Command and Response Token is a way to associate a name
with the command that will be issued. The token is named using the
'CART' host command. The same token name is used from the
CSLULGTS function.

It is an arbitrary name.

The CART is not case sensitive.

Agenda

CSL and OM overview
Intro to REXX
How to issue operator commands
How to check the response
Sample programs.

24

25

Retrieving the Response

The CSLULGTS function will create a stem variable that will
have the command response.

abc = CSLULGTS("out.","QRYTHETRAN","2:30")

Do x = 1 To out.0

 Say out.x

End

CSLULGTS has three parameters

1. stem name

2. cartid

3. wait time

- stem name is a set of variables in rexx. It is an array. The
convention is to set the number of entries in the zero-eth member.
out.0 has the number of entries in the array.

- use the same cartid as was previously used in the CART
subcommand.

- the wait time is the longest time to wait for the rexx program to
wait for the command response. The process is asynchronous, so
your program can do something else while the command is
executing.

26

Wait vs. Wait

There are two wait times specified:
OM Wait time
REXX wait time

Address IMSSPOC
 "WAIT 3:00" /* OM timeout value */

“QRY TRAN “

abc = CSLULGTS("out.","QRYTHETRAN","2:30")

OM wait time – time OM waits for IMS systems to respond. You
cannot retrieve missing responses after OM responds.

REXX wait time – it waits for OM response. You can re-try until
OM responds.

In the example, you should add logic to retry the CSLULGTS
function.

27

XML Response
abc = CSLULGTS("out.","QRYTHETRAN","2:30")
Do x = 1 To out.0
 Say out.x
End

out.0 = 89
out.1 = '<?xml version="1.0"?>'
out.2 = '<!DOCTYPE imsout SYSTEM "imsout.dtd">'
out.3 = '<imsout>'
out.4 = '<ctl>'
out.5 = '<omname>OM1OM </omname>'
out.6 = '<omvsn>1.2.0</omvsn>'
out.7 = '<xmlvsn>1 </xmlvsn>'
out.8 = '<statime>2005.105 20:38:52.387088</statime>'
out.9 = '<stotime>2005.105 20:38:52.475691</stotime>'
out.10= '<rqsttkn1>QRYTHETRAN </rqsttkn1>'
out.11= '<rc>00000000</rc>'
out.12= '<rsn>00000000</rsn>'
out.13= '</ctl>'

After issuing the CSLULGTS function, your rexx stem variable will
have XML statements. The statements will be in the individual
elements of the stem variable.

Command responses that are returned through the OM API are
embedded in XML tags.

The OM response is intended as a programming interface. See
‘Common Service Layer Guide and Reference’ for more information.

Agenda

CSL and OM overview
Intro to REXX
How to issue operator commands
How to check the response
Sample programs.

28

29

REXX SPOC API Sample 1
Program accepts a command as a parameter.

Issues the command.

Displays the XML statements.

These are sample programs meant to illustrate capabilities of
the REXX SPOC API. You will want to write your
programs more robustly.

30

REXX SPOC API Sample 1
 1 /* rexx */
 2 parse upper arg theIMScmd
 3 Address LINK 'CSLULXSB'
 4 If rc = 0 Then Do
 5 Address IMSSPOC
 6 "IMS plex1"
 7 "ROUTE imsb"
 8 "CART test12"
 9 "WAIT 3:00"
10 theIMScmd
11 results = cslulgts('resp.','test12','3:15')
12 Say 'imsrc='imsrc 'imsreason='imsreason
13 If resp.0 /= '' Then Do
14 Say resp.0' lines of output'
15 Do indx = 1 To resp.0
16 Say resp.indx
17 End
18 End
19 "END"
20 End

Highlights of sample program:

• The IMS command picked up in line 2 is executed in
line10

• line 5 - sets the default host command process to be
IMSSPOC.

• session values are set in lines 6 through 9

• the cartid specified in lines 8 and 11 need to be the
same.

• line 10 - the command is a variable. Your
implementation could be a fixed valued specified as a
quoted string.

• line 11 issues function CSLULGTS to retrieve the
command response.

• line 12 displays the return code and reason code

• lines 13 through 18 examine the XML statements
returned by CSLULGTS.

• line 19 cleans up IMSSPOC environment.

31

Return Codes and Reason Codes

Each of the IMSSPOC host commands and the CSLULGTS
function set return code values. The values are provided in
REXX variables:

imsrc - return code

imsreason - reason code

The values of the variables are character representations of hex
values. For example, the imsrc value is c'08000008X' when a
parameter is not correct. The character 'x' is at the end of the
string so REXX will treat it as a character.

A prefix of '08' is used by automation clients. The return code may also consist
of SCI, OM, RM or IMS return codes (not listed here).

Return codes
 "00000000X" Request completed successfully
 "08000004X" Warning
 "08000008X" Parameter error
 "08000010X" Environment error
 "08000014X" System error
Warning reason codes
 "00001000X" command still executing
Parameter error reason codes
 "00002000X" missing or invalid wait value
 "00002008X" missing or invalid IMSplex value
 "00002012X" missing or invalid STEM name
 "00002016X" missing or invalid token name
 "00002020X" too many parameters
 "00002024X" request token not found
 "00002028X" missing or invalid CART value
System error reason codes
 "00004000X" getmain failure

32

SPOC Sample Job
JCL to call REXX program.

Passes command to REXX program.

These are sample programs meant to illustrate capabilities of
the REXX SPOC API. You will want to write your
programs more robustly.

33

Sample Job

//RXSPOC JOB ,
// MSGCLASS=H,NOTIFY=USRT002,USER=USRT002
//*
//SPOC EXEC PGM=IKJEFT01
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
//SYSPROC DD DISP=SHR,DSN=LOCAL.SPOC.REXX
//SYSTSPRT DD SYSOUT=A
//SYSTSIN DD *
 %REXXSPOC QRY TRAN NAME(V*)
/*EOF

The batch job shown is an invocation of the batch TSO command
processor. Refer to TSO reference manuals for complete
information. Here is a summary of DD name usage:

STEPLIB- the name of the IMS SDFSRESL library

SYSPROC - the name of the rexx library. sysexec can also be used.

SYSTSPRT - output dataset

SYSTSIN - commands to be executed. In this case, it is the name of
the member from SYSPROC, plus the parameters.

34

Sample Program 2

Query the status of a transaction.

Examine the command response.

If the transaction is stopped,
Start the transaction.

These are sample programs meant to illustrate capabilities of
the REXX SPOC API. You will want to write your
programs more robustly.

35

Sample Program 2

 9 "CART qrytran12"
10 "QRY TRAN NAME(CDEBTRN3) SHOW(STATUS)"
11 results = cslulgts("resp.","qrytran12","3:15")
12 Do idx = 1 To resp.0
13 parse var resp.idx . "TRAN(CDEBTRN3" . ,
14 "MBR(" imsname ")" . ,
15 "LSTT(" status ")" .
16 If pos('STOSCHD', status) > 0 Then Do
17 "ROUTE" imsname
18 "UPD TRAN NAME(CDEBTRN3) START(SCHD)"
19 End
20 End

Query the status of a transaction and start it if it is
not started.

Highlights of sample program:
• The IMS command is executed in line 10
• line 11 gets the command response
• lines 12 through 15 looks at the XML looking for transaction
information.
• line 14 finds the IMS name for which status applies.
• line 16: if status indicates it is stopped, then issue a
command to start the transaction.
• line 17 routes the command to the correct IMS (Determined
in line 14)
• line 18 starts the transaction.

36

Sample Program 3

Query the QCNT of a transaction.

Examine the command response.

If QCNT is too high,
Start another region.

These are sample programs meant to illustrate capabilities of
the REXX SPOC API. You will want to write your
programs more robustly.

37

Sample Program 3

 9 "CART qrytran13"
10 "QRY TRAN NAME(SKS1) SHOW(QCNT)"
11 results = cslulgts("resp.", "qrytran13", "3:15")
12 Do idx = 1 To resp.0
13 parse var resp.idx . "TRAN(SKS1" . "Q(" count ")" .
14 If count /> '' &,
15 count > 5 Then Do
16 "CART strtrgn05"
17 "START REGION IMSRG5"
18 start? = cslulgts("strt.", "strtrgn05", “10:00”)
19 If imsrc = '00000000X' Then
20 Do
21 “CART updtran14”
22 “UPDATE TRAN NAME(SKS1) SET(CLASS(5))”
24 End
25 End

Find tran name in XML and check associated qcnt

Highlights of sample program:

•the command is issued in line 10

•lines 12 and 13 examine the command response.

•line 13: if information about the transaction is found,
determine the QCNT. It is saved to variable 'count'.

•line 15: if the QCNT is too much, resolve the problem

•lines 16 through 18: start a new region to handle more
transactions

•lines 20 through 24: change tran class to match the new
region.

NOTE: This is just an example of what can be done. In this
example, you may end up with less regions running class 5 than are
running the previous class.

38

Sample Program 4

Query a transaction.

Get parsed command response.

Display parts of stem variable

These are sample programs meant to illustrate capabilities of
the REXX SPOC API. You will want to write your
programs more robustly.

Sample Program 4

10 cartid = 'myqry001'

11 "CART" cartid

12 "QRY TRAN NAME(A*)"

13 results = CSLULGTP('qinfo', cartid, '1:30')

14 If qinfo.ctl.rc = 0 Then

15 Do

16 Say "OM name is" qinfo.ctl.omname

17 Say "Cmd master is" qinfo.cmd.master

18 End

In line 13, issue a different function name… it parses the XML, populating

In line 14 -18, examine the stem with fixed tail values.

39

Examples of stem variable
<omname> </omname> stem .ctl.omname

<rc> </rc> stem .ctl.rc

<input> </input> stem .cmd.input

<rsp> </rsp> stem .rsp.0 (number of rows)
stem .rsp.x.0 (number of cols)
stem .rsp.x.y
stem .rsp.x.y

40

Examples of stem variable
Messages are in compound array.

<mbr name="membername"> stem .msgdata.name.0 (number of systems)
stem .msgdata.name.y (1 member name)

<msg> </msg> stem .msgdata.msg.y.0 (num of msgs /sys)
stem .msgdata.msg.y.x (1 message)

41

41

Examples of stem variable

Report looks like TSO SPOC display

stem .report.0 (number of lines)
stem .report.x (1 line of report)

Response for: QRY TRAN SHOW(PSB,QCNT)

Trancode MbrName CC PSBname QCnt LQCnt

ADDINV IMS2 0 0

ADDINV IMS2 0 DFSSAM04 2

ADDINV SYS3 0 DFSSAM04 1

ADDPART IMS2 0 0

42

42

43

 Formatted report
– Specify the format in the CSLULOPT function

ADDRESS LINK 'CSLULXSB'
ADDRESS IMSSPOC; "IMS PLEX1"

“CART QRY1”
“QRY TRAN”
/* get command response */
spoc_rc = CSLULGTP('my.', “QRY1”, "00:10")
"END"

Do x = 1 to my.report.0
 Say my.report.x

End

Using REPORT.

When existing function CSLULGTP is used, it will create a rexx stem variable which contains the
formatting ‘listing’

The user specifies the stem prefix.

The stem suffix is always ‘report’ followed by a numeric suffix.

For example:

 my.report.0 always has the number of rows in the stem

 my.report.1 will have the ‘response for’ line, which contains the command issued.

 my.report.2 will have the heading line

 my.report.3 will have a dashed line

 my.report.4 and on will have the rows of data.

44

Started Task Example

Issue Type-2 commands from the system console

Use started task.

Started task runs the REXX SPOC API.

Output is viewable from the MVS syslog.

These are sample programs meant to illustrate capabilities of
the REXX SPOC API. You will want to write your
programs more robustly.

45

Sample Started Task

//IMSCMD PROC CMD='QRY IMSPLEX'
//SPOC EXEC PGM=IKJEFT01,
// PARM='%RXCMD &CMD'
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
//SYSPROC DD DISP=SHR,DSN=SVL.SPOC.REXX
//SYSTSPRT DD SYSOUT=A
//SYSTSIN DD DUMMY

From the operator’s console, issue:

 S IMSCMD,CMD=‘QRY TRAN NAME(ABC)’

Started task JCL:

The JCL shown is an invocation of the batch TSO command
processor. Refer to TSO reference manuals for complete
information.

The PROC statement defines a default command. The default is
overridden by the operator who types the command at the system
console.

Here is a summary of DD name usage:

STEPLIB- the name of the IMS SDFSRESL library

SYSPROC - the name of the rexx library. sysexec can also be used.

SYSTSPRT - output dataset

SYSTSIN - commands to be executed. In this case, it is not used!
The command to execute is the EXEC statement parameter.

46

Started Task Program
 1 /* rexx */
 2 parse upper arg theIMScmd
 3 Address LINK 'CSLULXSB'
 4 If rc = 0 Then Do
 5 Address IMSSPOC
 6 "IMS plex1"
 7 "CART test12"
 8 "WAIT 3:00"
 9 theIMScmd
10 results = cslulgts('resp.','test12','3:15')
11 If resp.0 /= '' Then Do
12 Do indx = 1 To resp.0
13 Address TSO,
14 “SEND ‘“resp.indx”’ CN(0)”
15 End
16 End
17 "END"
18 End

Highlights of sample program:

• The IMS command picked up in line 2 is executed in
line 10

• line 9 - the command is a variable. Your
implementation could be a fixed valued specified as a
quoted string.

• line 10 issues function CSLULGTS to retrieve the
command response.

• lines 12 through 18 examine the XML statements
returned by CSLULGTS.

• lines 13 and 14 use the SEND command to send the
response to the operators console and to SYSLOG.

47

Setting up Host Command

Call IRXSUBCM service routine to set up host environment
Program CSLULRXX gets control

Call the IRXSUBCM service routine to set up a host
command environment

In this example, program CSLULRXX gets control.

48

Processing Host Command

Program CSLULRXX gets control
Examine cmd_ptr -> string area

In this example, program CSLULRXX gets control.

The parameter list includes:

Host command

A Pointer to the Command string

The length of the command string

A token to save your workareas

And the return code from the host command.

