
JavaFX for ooRexx – Creating Powerful

Portable GUIs for ooRexx
Rony G. Flatscher (Rony.Flatscher@wu.ac.at), WU Vienna

"The 2017 International Rexx Symposium", Amsterdam, The Netherlands
April 99h – 12th, 2017

Abstract. The powerful "JavaFX" GUI classes together with their support of the
javax.script framework and the availability of a graphical GUI builder ("SceneBuilder")
make it possible for the latest version of BSF4ooRexx (a Rexx-Java bridge) with its
RexxScript implementation to use Rexx scripts as GUI handlers out of the box. It becomes
therefore also possible to create and control the most complex GUIs for and from Rexx
applications, which will be able to run unchanged on Windows, Linux and MacOSX. This
article explains the core concepts of JavaFX and how to take advantage of them from
ooRexx. Working stand-alone nutshell examples will demonstrate how JavaFX can be
controlled by and employed for ooRexx.

1 Introduction

This article first introduces briefly the history of the Java GUI1 frameworks awt,

swing and JavaFX which allow the creation of GUI applications that are portable

among Windows, Linux and MacOSX. It then explains the core concepts JavaFX

defines and which need to be understood to become able to exploit this powerful

Java framework, which will be demonstrated with appropriate ooRexx nutshell

programs. As JavaFX includes the possibility to define the most complex GUIs

with the help of XML encoded ("FXML") files, that can be created and edited with a

portable tool named SceneBuilder, BSF4ooRexx with its RexxScript [1] and

RexxScript annotation [1] adds support that eases the exploitation of this

infrastructure from Rexx. Small nutshell examples will demonstrate how easy it is

for ooRexx applications to take advantage of JavaFX and FXML.

2 Brief History

Already the first version of Java 1.0 included a founding, portable GUI framework

named "abstract window toolkit (awt)" organized in the Java package java.awt [2]

in 1996, more than 20 years ago. The Java classes allowed for creating portable

GUI applications that could be run unchanged on all supported operating systems

1 GUI is the acronym for "graphical user interface".

2017-11-17 16:10:36 1/43

like Windows or OS/2 then. Operating system dependent differences2 in the GUI

area were abstracted away by the Java implementation of this portable GUI

framework.

Two years later (1998) with the next version of Java, 1.2, an additional GUI

framework got introduced organized in the Java package javax.swing. [3] These

GUI classes were implemented and drawn in Java following the GUI concepts used

for the awt GUI classes and allowed among other things to "skin"3 the GUI classes

at run time or to format GUI classes using the then popular HTML style attributes.

In 2008 a stand-alone new Java package named JavaFX got introduced with a

proper scripting language named "JavaFX Script (FX)", which was removed later

with the release of JavaFX 2.0 in 2011. JavaFX was meant as a full replacement

for the java.awt and javax.swing packages. With an update to Java 1.7/7 it was

added to the Java runtime environment (JRE), with the release of Java 1.8/8 (2014)

its name was changed to "JavaFX 8". JavaFX is supposed to ease the creation and

maintenance of complex GUI applications on all Java supported devices, from very

small portable devices to the most powerful computers with large screens.

3 JavaFX

This section introduces the JavaFX concepts and demonstrates how to take

advantage of them from ooRexx using BSF4ooRexx.

3.1 Concepts

JavaFX introduces a new package named "javafx". [5] The entire GUI system is

organized around the idiom of a theater with one or more stages, where on each

stage a particular scene gets played. Each scene is managed by a controller

program, that can be implemented in Java or in any javax.script language.

2 The OS/2 GUI origin of the coordinate "0,0" was the lower left corner of the screen, whereas in
Windows and many other operating systems that coordinate was defined to be the upper left
corner of the screen. Yet, the Java GUI origin of "0,0" was defined to be the upper left-hand
corner and the necessary OS/2-dependent mappings would be done transparently by the
java.awt classes, relieving the programmers from handling such differences.

3 The layout of the visible swing GUI classes can be changed at run time, taking advantage of the
package javax.swing.plaf which allows for this flexible behaviour ("PLAF" is an acronym for
"pluggable look and feel"). [4] In this sense the look, the "skin" of the visible GUI classes can be
modified at run time, changing the look and feel of a Java application at will.

2017-11-17 16:10:36 2/43

3.1.1 JavaFX Interface Class "Property"

Many JavaFX GUI classes take advantage of the javafx.beans.property.Property [6]

interface class for defining their properties. Interacting with such properties eases

the definition and the coding of GUI applications. Therefore there are numerous

JavaFX implementations for properties of different types available that get

employed in various JavaFX GUI classes. They are documented in the Javadocs for

the interface Property [6] where the Javadocs list all classes implementing that

particular interface class.

Some JavaFX properties can be bound to each other, such that changes in a

bound property get reflected in the other property.

Code 1 below demonstrates how one can use BSF4ooRexx to import the JavaFX

class SimpleIntegerProperty [7] into Rexx for creating two such objects, one

(num1) representing the integer value 1, the other (num2) the integer value 2.

Using the add method inherited from IntegerExpression [8] to add the two integer

properties yields another property that is named sum, which binds the two

operands num1 and num2.

As long as the current value of the sum property (an IntegerBinding) is not fetched

either with the methods getValue or get, its toString method indicates that the

addition has not yet been evaluated, outputting therefore the string value

"IntegerBinding [invalid]" as can be seen from the output in Output 1 below. The

2017-11-17 16:10:36 3/43

 -- import the Java class, allow it to be used like an ooRexx class thereafter
sipClz=bsf.import("javafx.beans.property.SimpleIntegerProperty")
num1 = sipClz~new(1)
say "num1:" num1 "|" num1~toString "|" num1~getValue
num2 = sipClz~new(2)
say "num2:" num2 "|" num2~toString "|" num2~getValue
say
sum=num1~add(num2)
say "sum: " sum
say "sum: " sum~toString "|" sum~getValue "|" sum~toString
say "---"
say "num1:" num1~getValue "num2:" num2~getValue "-> sum:" sum~getValue
say "setting 'num1=2' ..."
num1~set(2)
say "num1:" num1~get "num2:" num2~get "-> sum:" sum~get
say "setting 'num2=3' ..."
num2~set(3)
say "num1:" num1~getValue "num2:" num2~getValue "-> sum:" sum~getValue

::requires "BSF.CLS" -- get Java support

Code 1: Using bound SimpleIntegerProperty objects.

effect of requesting the current value of sum in the same statement, displays the

result value 3 and following that expression the invocation of its toString method

will change the string to "IntegerBinding [value: 3]".

After the three dashes the current values of num1, num2 and sum get displayed.

From now on, whenever num1 or num2 get changed and the value of sum gets

queried, the result of the additions of the two bound operands num1 and num2

will be displayed. Output 1 displays the output of running the Rexx program in

Code 1.

3.1.2 The "JavaFX Application Thread"

The creation of and interaction with JavaFX GUI objects must be carried out in the

JavaFX Application Thread only, otherwise the application may not be responsive

to user input anymore and as a result hangs. JavaFX reports GUI events by calling

event handlers on this JavaFX Application Thread, such that it is always safe for

event handlers to directly interact with the JavaFX GUI objects. 4

In the case that an application needs to directly communicate with the JavaFX GUI

objects it is able to do so by employing the runLater method (with a

java.lang.Runnable as an argument) of the JavaFX class javafx.application.Plat-

form [12], which will make sure that the Runnable object gets invoked on the

JavaFX Application Thread.5

4 This corresponds to the event dispatch handler [9] that has been documented with tutorials of
how to use the swing [10] and awt [11] frameworks.

5 For an easy BSF4ooRexx solution for this problem see chapter "B Addendum: The Classes
FXGuiThread and GUIMessage" on page 35.

2017-11-17 16:10:36 4/43

num1: javafx.beans.property.SimpleIntegerProperty@67c3bb | IntegerProperty [value: 1] | 1
num2: javafx.beans.property.SimpleIntegerProperty@19bb37 | IntegerProperty [value: 2] | 2

sum: javafx.beans.binding.Bindings$15@1d10166
sum: IntegerBinding [invalid] | 3 | IntegerBinding [value: 3]

num1: 1 num2: 2 -> sum: 3
setting 'num1=2' ...
num1: 2 num2: 2 -> sum: 4
setting 'num2=3' ...
num1: 2 num2: 3 -> sum: 5

Output 1: Output of executing Code 1, above.

3.1.3 JavaFX Stages and JavaFX Scenes

A JavaFX application creates one or more windows of type javafx.stageStage [13]

which can be displayed on the host's GUI. Each stage can be used to display a

javafx.stage.Scene [14] which is a container for a graph of GUI nodes, that are

usually instances of one of the JavaFX GUI classes from packages that start with

the package name javafx.scene. [15]. An application may define multiple scene

objects and use them to display them in stage objects.

The creation of and interaction with stages and scenes needs to be carried out on

the JavaFX Application Thread.

3.1.4 DOM and CSS

The fundamental data structure of JavaFX GUIs is a scene that is composed of a

(hierarchical) tree of GUI objects of type javafx.scene.Node6. Each node is assigned

to a specific scene object and may have a unique id and an individual style for

rendering7 it.

Comparable to using DOM [18] traversing HTML [19], the creation of a GUI for a

scene will traverse the hierarchic scene graph node by node rendering each node

using CSS8 rules.

Any programmer familiar with the web technologies HTML, DOM and CSS can

readily apply her knowledge when devising and creating JavaFX applications!

3.1.5 JavaFX Abstract Class "Application"

Each JavaFX application must extend the abstract class javafx.application.Appli-

cation [23] and implement the method start that sets up the initial GUI by creating

and setting a scene to the supplied stage. The launch method will first invoke the

method init, then create the JavaFX Application Thread and a stage object, which

will be passed as the sole argument to the start method, which executes on the

JavaFX Application Thread. Therefore it is safe to create and interact with JavaFX

stage and scene objects in this start method.

6 All JavaFX GUI classes in a scene have the javafx.scene.Node class as one of their supertypes.

7 When rendering the user interface JavaFX employs the open source "WebKit" engine at the time
of writing. This rendering engine gets used e.g. in Apple's Safari web browsers.

8 Cf. the world wide web consortium homepage [20]. JavaFX defines a subset of CSS attributes
and values in [21].

2017-11-17 16:10:36 5/43

BSF4ooRexx' external Rexx function named BsfCreateRexxProxy()9 [24] allows for

9 The first argument is the Rexx object implementing the abstract Java methods, the second
argument is optional and may be any Rexx object (if given it will get added to the slotDir
argument under the name USERDATA), the third argument is the fully qualified Java interface or
abstract class name that defines the type of the returned Java object.

2017-11-17 16:10:36 6/43

/* modelled after
https://docs.oracle.com/javase/8/javafx/api/javafx/application/Application.html
*/

myRexxApp=.myApp~new -- create an instance of the Rexx class
 -- extend the Java abstract class with the "myRexxApp" object
jrxApp=BSFCreateRexxProxy(myRexxApp, ,"javafx.application.Application")
jrxApp~launch(jrxApp~getClass, .nil) -- launch the Application

::class MyApp -- the Rexx class used to extend the Java class
::method start -- implementing the abstract Java method "start"
 use arg stage -- fetch the stage object to use for a scene to show
 -- create a circle object (will be black)
 circ =.bsf~new("javafx.scene.shape.Circle", 40, 40, 30)
 -- create a group and add the circle to it
 root =.bsf~new("javafx.scene.Group")
 root~getChildren~add(circ) -- add the circle to the group
 -- create a scene assign it the group as the root node
 scene=.bsf~new("javafx.scene.Scene", root, 400, 300)
 -- interact with the stage
 stage~title="My JavaFX Application from Rexx"
 stage~scene=scene -- assign the scene
 stage~show -- show the stage (window)

::requires "BSF.CLS" -- get Java support

Code 2: A simple JavaFX Rexx application modelled after the example in [23].

Figure 1: JavaFX application created by Code 2 above.

creating a Java object from a Rexx object, that implements the abstract methods

of a Java interface or abstract classes in Rexx. The resulting Java object can then

be used as an argument wherever a Java type of the interface or abstract class is

required. If the abstract method gets invoked on the Java side this will cause a

Rexx message of the abstract method's name to be sent to the Rexx object. Any

Java arguments are passed as Rexx arguments, where BSF4ooRexx will always add

a trailing "slotDir" argument10 of type Slot.Argument11 which is a Rexx directory

containing additional, context related information for the invoked Rexx method.

Code 2 above shows a Rexx program modelled after the presented example in

[23]12 which will create a simple JavaFX GUI application as depicted in Figure 11.

10As the slotDir argument is always the last argument one can fetch it with the built-in function
arg() as well, e.g. "slotDir=arg(arg())", where arg() returns the actual number of arguments
which is then used to fetch last supplied Rexx argument.

11A Rexx programmer can therefore always test whether the last supplied argument was sent by
the invoker or was added by BSF4ooRexx by testing: slotDir~isA(.Slot.Argument).

12Please note that the Java example uses the circle shape object as the sole argument for the
constructor of the JavaFX Group class which will cause the Java compiler to pick the varargs
version. Instead the Rexx version gets the group's children collection and adds the JavaFX
Circle shape object to it. Alternatively, the Rexx program could have created a Java array of type

2017-11-17 16:10:36 7/43

myRexxApp=.myApp~new -- create an instance of the Rexx class
 -- extend the Java abstract class with the "myRexxApp" object
jrxApp=BSFCreateRexxProxy(myRexxApp, ,"javafx.application.Application")

signal on syntax -- if an error occurs, jump to label "SYNTAX:" below
jrxApp~launch(jrxApp~getClass, .nil) -- launch the Application
exit

syntax: -- syntax condition handling routine
 co=condition("object")-- get condition object
 say ppCondition2(co) -- show all error information including nested Java exceptions

::requires "rgf_util2.rex" -- get all utility routines from this package

::class MyApp -- the Rexx class used to extend the Java class
::method start -- implementing the abstract Java method "start"
 use arg stage -- fetch the stage object to use for a scene to show
 -- create a circle object (will be black)
 circ =.bsf~new("javafx.scene.shape.Circle", 40, 40, 30)
 -- create a group and add the circle to it
 root =.bsf~new("javafx.scene.Group")
 root~getChildren~add(circ) -- add the circle to the group
 -- create a scene assign it the group as the root node
 scene=.bsf~new("javafx.scene.Scene", root, 400, 300)
 -- interact with the stage
 stage~title="My JavaFX Application from Rexx"
 stage~scene=scene -- assign the scene
 stage~show -- show the stage (window)

::requires "BSF.CLS" -- get Java support

Code 3: A simple JavaFX Rexx application with a Rexx syntax condition handler.

Note, if there are errors in the start method of the Rexx class then it may be the

case that the original source of the error on the JavaFX side is not displayed,

rather the Java exception that got returned and which may nest the original Java

exception. In such a case one needs to iterate over the nested Java exceptions

using the getCause method and get the description of the bottom Java exception

with the toString method.

With BSF4ooRexx the Rexx utility package, rgf_util2.rex [25], gets distributed

which eases displaying such a chain of nested Java exceptions by employing the

public method ppCondition2() which expects an ooRexx condition object13 as its

sole argument. ppCondition2() will display all nested Java exceptions such that a

Rexx programmer can find out the root cause of any error that may be created in

the aforementioned start method. Code 3 highlights the necessary changes of

Code 2 to output all nested Java exceptions in case such an exception occurs.

3.1.6 Model View Controller (MVC) Pattern

As we have seen we are able to create JavaFX applications quite easily. However so

far we are not able to react upon events that are created by the GUI. For example

in Code 2 above the GUI would not react if we would click into its area. The reason

is that we have not set up any code that would react to such events.

Like in the awt and swing frameworks the JavaFX framework wsa created with the

"model-view-controller (MVC)" [26] pattern in mind. The model component of an

application would set up the application and use one ore more view components

for presentation to the user, which can have controller components assigned to

which events can be redirected.

In the Java awt and swing GUI frameworks the view components like GUI controls

would communicate events to controllers by allowing listeners to be registered.

Depending on the listener type the GUI component would then invoke the

corresponding event method in the supplied controller's listener object.

The JavaFX framework takes a different, simpler approach: it defines event

Node with a size of one, store the Circle shape object in it and use the Java array as the
argument for the Group constructor which would then cause the varargs version to be picked.

13 If a Rexx condition gets raised the condition handler can use the built-in function
CONDITION('Object') to retrieve the condition object, which is a Rexx directory that includes all
condition relevant information.

2017-11-17 16:10:36 8/43

properties for its view components that expect an object that implements the

interface javafx.event.EventHandler. Whenever the GUI component triggers an

event, the appropriate property will invoke its EventHandler's handle method,

supplying an event object that may contain additional information about the

event.

3.1.7 Creating a Simple JavaFX GUI Dialog Application with ooRexx

This section introduces a simple JavaFX GUI application in ooRexx which creates a

colored javafx.scene.control.Label and a colored javafx.scene.control.Button. The

Rexx code is depicted in Code 4 below: it defines two Rexx classes:

• RexxApplication: this class is used to implement the abstract Java method

start as a Rexx method, which creates a JavaFX Label and a Button object,

which get sized, positioned and styled, e.g. with a blue text color. The

Button object will get an instance of the RexxButtonHandler assigned as its

action handler. The Rexx object will be wrapped up as a Java Rexx proxy

defining it to implement all methods of the javafx.event.EventHandler

interface, i.e. in this case the single method named handle. Each time the

button gets pressed it will invoke the method handle. The RexxApplication

object will be wrapped up as a Java Rexx proxy that extends the abstract

javafx.application.Application class such that it becomes possible to send it

the launch message which will cause the start method to be invoked in the

Rexx object.

• RexxButtonHandler: this class implements the javafx.event.EventHandler

interface, i.e. the method named handle in Rexx. When an instance of this

class gets created a JavaFX Label object needs to be supplied, which is

stored in the attribute named label and directly accessed in the handle

method. As event handler methods get always invoked in the JavaFX

Application Thread, it is safe to directly interact with any JavaFX GUI object

in this case with the label object.

Studying the RexxApplication start method it is interesting to learn that there are

quite many aspects that need attention and configuration when creating, sizing,

styling and positioning GUI controls.

2017-11-17 16:10:36 9/43

Running the JavaFX dialog application and pressing the button two times, yields

2017-11-17 16:10:36 10/43

rxApp=.RexxApplication~new -- create Rexx object that will control the FXML set up
 -- rxApp will be used for "javafx.application.Application"
jrxApp=BSFCreateRexxProxy(rxApp, ,"javafx.application.Application")
jrxApp~launch(jrxApp~getClass, .nil) -- launch the application, invokes "start"

::requires "BSF.CLS" -- get Java support

-- Rexx class defines "javafx.application.Application" abstract method "start"
::class RexxApplication -- implements the abstract class "javafx.application.Application"
::method start -- Rexx method "start" implements the abstract method
 use arg primaryStage -- fetch the primary stage (window)
 primaryStage~setTitle("Hello JavaFX from ooRexx! (Blue Version)")

 -- get Java class objects to ease access to their constants (static fields)
 colorClz=bsf.loadClass("javafx.scene.paint.Color") -- JavaFX colors
 cdClz=bsf.loadClass("javafx.scene.control.ContentDisplay") -- ContentDisplay constants
 alClz=bsf.loadClass("javafx.geometry.Pos") -- alignment constants (an Enum class)

 root=.bsf~new("javafx.scene.layout.AnchorPane") -- create the root node
 root~prefHeight=200 -- or: root~setPrefHeight(200)
 root~prefWidth=400 -- or: root~setPrefWidth(400)
 -- define the Label
 lbl=.bsf~new("javafx.scene.control.Label")
 lbl~textFill=colorClz~BLUE -- or: lbl~setTextFill(colorClz~BLUE)
 lbl~setLayoutX(76) -- or: lbl~layoutX=76
 lbl~setLayoutY(138) -- or: lbl~layoutY=138
 lbl~prefHeight="16.0" -- or: lbl~setPrefHeight("16.0")
 lbl~prefWidth="248.0" -- or: lbl~setPrefWidth("248.0")
 lbl~contentDisplay=cdClz~CENTER -- or: lbl~setContentDisplay (cdClz~CENTER)
 lbl~alignment=alClz~valueOf("CENTER") -- or: lbl~setAlignment(alClz~valueOf("CENTER"))
 -- define and add the Button, assign values as if we deal with Rexx attributes
 btn=.bsf~new("javafx.scene.control.Button")
 btn~textFill=colorClz~BLUE -- or: btn~setTextFill(colorClz~BLUE)
 btn~layoutX=170 -- or: btn~setLayoutX(170)
 btn~layoutY=89 -- or: btn~setLayoutY(89)
 btn~text="Click Me!" -- or: btn~setText("Click Me!")
 -- create a Rexx ButtonHandler, wrap it up as a Java RexxProxy
 rh=.RexxButtonHandler~new(lbl)-- create Rexx object, supply it the label "lbl"
 jrh=BSFCreateRexxProxy(rh, ,"javafx.event.EventHandler")
 btn~setOnAction(jrh) -- forwards "handle" message to Rexx object
 -- add the button and label to the AnchorPane object
 root~getChildren~~add(btn)~~add(lbl)
 -- put the scene on the stage
 primaryStage~setScene(.bsf~new("javafx.scene.Scene", root))
 primaryStage~show -- show the stage (window) with the scene

 -- Rexx class which handles the button presses
::class RexxButtonHandler -- implements "javafx.event.EventHandler" interface
::method init -- Rexx constructor method
 expose label -- allow direct access to ooRexx attribute
 use arg label -- save reference to javafx.scene.control.Label

::method handle -- will be invoked by the Java side
 expose label -- allow direct access to ooRexx attribute, not used in this example
 -- use arg event, slotDir -- expected arguments
 now=.dateTime~new -- time of invocation
 say now": arrived in method 'handle' ..."
 say '... current value of label='pp(label~getText)
 label~text="Clicked at:" now -- set text property
 say '... new value of label='pp(label~getText)
 say

Code 4: A simple JavaFX GUI application in ooRexx ("javafx_01.rex").

2017-11-17 16:10:36 11/43

2017-10-31T18:40:06.558000: arrived in method 'handle' ...
... current value of label=[]
... new value of label=[Clicked at: 2017-10-31T18:40:06.558000]

2017-10-31T18:40:38.104000: arrived in method 'handle' ...
... current value of label=[Clicked at: 2017-10-31T18:40:06.558000]
... new value of label=[Clicked at: 2017-10-31T18:40:38.104000]

Figure 2: The JavaFX initial dialog and changes by two button presses.

the dialogs and the console output as depicted in Figure 2 above.

3.2 Defining Scenes in FXML (FX Markup Language)

The JavaFX framework allows the definition of GUIs in a declarative manner using

the "FX Markup Language (FXML)" and saving them in a file. FXML mandates a well

formed XML markup, but describes the elements and properties informally in [27].

There is neither a DTD (document type definition) nor a XSD (XML schema

definition) for FXML, because elements representing JavaFX compliant controls

should always be usable in FXML files in the case that either JavaFX creates new

controls over time or third party JavaFX controls (e.g. [28]) get employed.

Code 5 below depicts an FXML file that defines a JavaFX dialog that is comparable

to the example in the section "3.1.7 Creating a Simple JavaFX GUI Dialog

Application with ooRexx" above, with the exception that the textFill property in

the label and button controls is defined to be green (instead of blue).

As can be seen from that example there are XML import processing instructions

(PI)14 that fully qualify the javafx.scene classes that needs to be imported in order

to process the elements (unqualified Java class names) defined in the XML file. The

attributes/properties defined for the elements will be used to set the values of the

JavaFX properties by the same name.

The processing instruction language defines a javax.script scripting language to

be used for executing any programs defined in an fx:script element or

programming statements in event handler. Code 5 below defines "rexx" as the

scripting language.

3.2.1 SceneBuilder

There exists a tool, SceneBuilder, that allows one to create JavaFX GUIs

interactively with drag and drop [31] and set the attributes of available properties,

as well as definitions relevant for the layout and code related information for

controllers15. It is possible to add third party JavaFX controls to SceneBuilder.

Although developed and maintained by Oracle, free installation packages of

14A processing instruction starts with the charactesr "<?" followed by the instruction and ends
with "?>", cf. [29], [30].

15SceneBuilder directly supports controllers implemented in Java.

2017-11-17 16:10:37 12/43

SceneBuilder are usually provided for download by other companies such as Gluon

[32].

3.2.2 The JavaFX "FXMLLoader" Class

When graphical user interface definitions get stored in FXML files, one needs to

use the javafx.fxml.FXMLLoader class to load (process) that FXML file.

The loading process will carry out processing instructions as they come along,

load and maintain stylesheets, create and build the JavaFX node objects from the

element definitions, setting the properties to the defined values, setting event

handlers defined in the attributes/properties in the FXML elements that start with

the string "on", eventually builds a hierarchy from all of the nested element

definitions and finally returns the root node object of the resulting tree.

2017-11-17 16:10:37 13/43

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.control.Button?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.layout.AnchorPane?>

<!-- the processing instruction (PI) defines the Java script engine named 'rexx'
 to be used for executing code in this FXML file: running "fxml_01_controller.rex"
 and the code in the 'onAction' event attribute for the Button element -->
<?language rexx?>

<AnchorPane id="AnchorPane" prefHeight="200" prefWidth="400"
 xmlns:fx="http://javafx.com/fxml/1">

 <!-- call Rexx program, its public routine "buttonClicked" is known afterwards -->
 <fx:script source="fxml_01_controller.rex" />

 <children>
 <!-- the Rexx code in the 'onAction' attribute will be invoked by JavaFX;
 note: last argument is the slotDir argument from BSF4ooRexx
 -->
 <Button fx:id="idButton1" layoutX="170.0" layoutY="89.0"
 onAction="slotDir=arg(arg()); call buttonClicked slotDir;"
 text="Click Me!" textFill="GREEN" />

 <Label fx:id="idLabel1" alignment="CENTER" contentDisplay="CENTER"
 layoutX="76.0" layoutY="138.0"
 minHeight="16" minWidth="49"
 prefHeight="16.0" prefWidth="248.0"
 textFill="GREEN" />
 </children>
</AnchorPane>

Code 5: FXML definitions ("fxml_01.fxml").

3.2.2.1 Defining FXML Controller that Are Implemented in Rexx

For each FXML file one is able to define a controller that may react to events in

JavaFX GUI objects. The SceneBuilder by default supports controllers written in

2017-11-17 16:10:37 14/43

Figure 3: SceneBuilder displaying Code 5 above, highlighting the Button (note the
Rexx code in the "onAction" property labeled "On Action") and the Label controls.

Java. However, using the language processing instruction one can use any

javax.script programming language for programming the controller, in the case of

Rexx, ooRexx the name of the javax.script defined language is one of "rexx",

"Rexx", "oorexx", "ooRexx", "orexx", and "oRexx". The FXML file in Code 5 above

uses "rexx".

Any fx:script definitions or event handler statements get carried out using the

javax.script infrastructure [1]. The way JavaFX instruments this infrastructure is

very basic: there is only one javax.script language that can be set per FXML file16

and the arguments supplied to the event handlers are not supplied directly, but

indirectly via the ScriptContext. bindings, such that the event argument will be

stored in its ENGINE_SCOPE bindings. All JavaFX objects that got created for FXML

elements with an fx:id attribute right before a fx:script defined program gets

executed will be made available in the ScriptContext GLOBAL_SCOPE bindings.17

Rexx programmers can use so called @get RexxScript annotations [1] in their

Rexx code to fetch such JavaFX objects from the ScriptContext bindings and make

them available as local Rexx variables by the same name. Code 6 above

demonstrates this fetching with the line "/* @get(idLabel1) */", where afterwards

16The FXMLLoader creates one separate instance of the RexxScriptEngine class for each FXML file
and uses that instance to execute the Rexx programs in that FXML file. If an application
consists of multiple FXML files, then there will be multiple RexxScriptEngine instances.

17This behaviour is exploited in some of the BSF4ooRexx JavaFX samples by adding a <fx:script
source="put_FXID_objects_into.my.app.rex" /> element right before the closing tag of the root
element in the FXML file. The Rexx program will then have access to all JavaFX objects with a
fx:id value and stores them in the Rexx global .environment in a directory named MY.APP,
which gets a directory entry by named after the FXML file. That directory will then be used to
store each JavaFX object indexed by its fx:id value.

2017-11-17 16:10:37 15/43

/* This routine will be called from the Rexx code defined in the Button element in
 with the fx:id="button" the "onAction" attribute in the FXML Button definition */
::routine buttonClicked public
 slotDir=arg(arg()) -- note: last argument is the slotDir argument from BSF4ooRexx
 now=.dateTime~new -- time of invocation
 say now": arrived in routine 'buttonClicked' ..."
 /* RexxScript annotation fetches "label" from ScriptContext
 and makes it available as the Rexx variable "LABEL": */
 /* @get(idLabel1) */
 say '... current value of label='pp(idLabel1~getText)
 idLabel1~text="Clicked at:" now -- set text property
 say '... new value of label='pp(idLabel1~getText)
 say

Code 6: The Rexx controller ("fxml_01_controller.rex").

the Label object can be referenced with the local Rexx variable named "idLabel1".

If a Rexx handler gets invoked by JavaFX, BSF4ooRexx will always supply a trailing

argument, the "slotDir" argument, which is a Rexx directory of type Slot.Argument

that in the case of such a RexxScript invocation will contain an entry

SCRIPTCONTEXT which allows one to directly interact with it.

Unlike ooRexx, a RexxScriptEngine instance will make all public classes and public

routines always available to code that gets executed afterwards. This way after

FXMLLoader executed the fx:script program "FXML_01_controller.rex" while

processing the FXML file depicted in Code 5 above its public routine

"buttonClicked" is available when the Rexx event handler code is run for the

Button element's event handler stored with the onAction property.18

Any invocation of an event handler will be carried out on the JavaFX Application

Thread, such that it is safe to interact with any GUI elements from the event

handling code.

3.2.2.2 Special Processing of "text" Attribute Values

The FXMLLoader analyzes the value of text attributes in FXML files and depending

on the existence of an optional prefix character supplies the following services:

• $ prefix character:

◦ if the remaining text is actually enclosed in curly brackets, then it gets

extracted and taken as the name of an attribute that is used to lookup

the ScriptContext bindings. The resulting value will be used to fill in the

text property. Each time the value of this attribute changes in the

ScriptContext bindings will cause the text property to be updated to

reflect that change. Example: "${currentTime}"

◦ If the remaining text is not enclosed in curly brackets, then the name is

taken as the name of an attribute that gets used to lookup the Script-

Context bindings once at loading time. The resulting value will be used

to fill in the text property. Example: "$startupTime"

18Please note, that for RexxScript annotations to work, it is important that the routine or method
gets the slotDir (or alternatively the ScriptContext) object as its last argument.

2017-11-17 16:10:37 16/43

• % prefix character, if the FXMLLoader is used with the load method that

accepts a java.util.ResourceBundle [34] 19 object as its second argument. A

ResourceBundle allows among other things the java.util.Locale [36]

dependent translation of name=value pairs that are stored in locale

(language and region) dependent properties text files. In this case the

remaining text is taken as the name that will be used to lookup the

properties file and return its value. To put it in another way: this feature

makes it easy to internationalize the GUI by making sure that the text values

use the strings that are defined in a particular Locale. To support different

languages on the GUI then becomes a task of defining the user interface

text in properties files created for those languages. Example: "%clickMe".

3.2.3 Creating a Simple JavaFX GUI Application with FXML in ooRexx

In this section the JavaFX GUI application that got introduced in "3.1.7 Creating a

Simple JavaFX GUI Dialog Application with ooRexx" on page 9 above gets broken

up into three different files:

• fxml_01.fxml: this is the FXML file that fully defines the GUI and is depicted

in Code 5 on page 13 above.

• fxml_01_controller.rex: this is the Rexx controller that defines the public

buttonClicked routine that updates the Label object, outputs debug

19Cf. the tutorial at [35] .

2017-11-17 16:10:37 17/43

rxApp=.RexxApplication~new -- create Rexx object that will control the FXML set up
jrxApp=BSFCreateRexxProxy(rxApp, ,"javafx.application.Application")
jrxApp~launch(jrxApp~getClass, .nil) -- launch the application, invokes "start"

::requires "BSF.CLS" -- get Java support

-- Rexx class defines "javafx.application.Application" abstract method "start"
::class RexxApplication -- implements the abstract class "javafx.application.Application"

::method start -- Rexx method "start" implements the abstract method
 use arg primaryStage -- fetch the primary stage (window)
 primaryStage~setTitle("Hello JavaFX from ooRexx! (Green Version)")

 -- create an URL for the FMXLDocument.fxml file (hence the protocol "file:")
 fxmlUrl=.bsf~new("java.net.URL", "file:fxml_01.fxml")
 -- use FXMLLoader to load the FXML and create the GUI graph from its definitions:
 rootNode=bsf.loadClass("javafx.fxml.FXMLLoader")~load(fxmlUrl)

 scene=.bsf~new("javafx.scene.Scene", rootNode) -- create a scene for our document
 primaryStage~setScene(scene) -- set the stage to our scene
 primaryStage~show -- show the stage (and thereby our scene)

Code 7: A simple JavaFX GUI application with FXML in ooRexx ("fxml_01.rex").

2017-11-17 16:10:37 18/43

REXXout>2017-10-31T19:02:11.047000: arrived in routine 'buttonClicked' ...
REXXout>... current value of label=[]
REXXout>... new value of label=[Clicked at: 2017-10-31T19:02:11.047000]
REXXout>
REXXout>2017-10-31T19:02:29.911000: arrived in routine 'buttonClicked' ...
REXXout>... current value of label=[Clicked at: 2017-10-31T19:02:11.047000]
REXXout>... new value of label=[Clicked at: 2017-10-31T19:02:29.911000]
REXXout>

Figure 4: The JavaFX initial dialog and changes by two button presses.

information on the console and is shown in Code 6 on page 15 above. As

this Rexx program gets executed by a RexxScriptEngine the ooRexx .output

monitor will prefix the output with the string "REXXout>" [1] to allow Rexx

output to be easily distinguishable from Java output.

• fxml_02.rex: this is the main Rexx program, which is depicted in Code 7

above. Comparing this program with the one in Code 4 on page 10 above it

is immediately clear that it is much simpler, because the GUI definition and

the controller for it got removed. It employs the FXMLLoader class to load

the FXML file and set it up, creates a Scene with it that gets displayed on the

primaryStage. It is interesting to note, that FXMLLoader expects a

java.net.URL object that denotes the FXML file.

Comparing the GUIs in Figure 2 on page 11 with Figure 4 on page 18 they look

alike with the exception of the title and the textFill color. Also the console output

differs, as in the FXML case a RexxScriptEngine gets created for executing the

controller's statements which will automatically cause the prefix "REXXout>" to be

prepended to the output of each SAY statement.

Considering that creating a GUI, placing and styling elements in it is much easier

done interactively than in code, the solution exploiting the JavaFX FXML feature

becomes preferable. In addition, whenever the GUI needs changes in placing and

styling there is no need to change the program at all, making maintaining GUIs

less time-consuming, less error-prone, in short: much cheaper!

3.2.4 A More Advanced JavaFX GUI Application with FXML in ooRexx

As JavaFX allows CSS to be employed for layouting and formatting of GUI

elements, this section will demonstrate employing CSS. In addition the application

will take advantage of FXMLLoader's special processing of text properties that

start with the characters $ and % as introduced in section 3.2.2.2, Special

Processing of "text" Attribute Values, on page 16 above. The resulting application

will not be aesthetically beautiful, however, it should demonstrate the effects.

The application is comprised of the following files:

• bsf4oorexx_032.png: the image (32 by 32 pixels) used as a tile for the

application's background in the fxml_02.css rule for the class "root", cf.

2017-11-17 16:10:37 19/43

2017-11-17 16:10:37 20/43

! "fxml_02_en.properties"
! This is the English (en) translation for two terms.
!
! the following key is used in the idLabelYear: text="%year"
year = Year->
! the following key is used in the idButton: text="%clickMe"
clickMe = Click Me!

! "fxml_02_de.properties"
! This is the German (de) translation for two terms.
!
! the following key is used in the idLabelYear: text="%year"
year = Jahr->
! the following key is used in the idButton: text="%clickMe"
clickMe = Drück mich!

Code 8: The properties files "fxml_02_en.properties" and "fxml_02_de.properties".

Figure 5: The 32x32 images "oorexx_032.png" and "bsf4oorexx_032.png" .

Figure 6: The GUI in English and in German, values from the properties files.

Figure 5 above,

• fxml_02.rex: the Rexx program depicted in Code 12 on page 24 below will

take an argument from the user from the command line and if the string is

"de" ("de" for "deutsch", which simply means "German") then GUI should be

translated into German. To do so the RexxApplication class gets instantiated

with the supplied argument that gets stored in the attribute named "locale"

which will be accessed later in the start method in order to set up the

ResourceBundle for the desired language. The language bundle is then

supplied to the respective FXMLLoader load method and automatically

2017-11-17 16:10:37 21/43

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.control.Button?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.layout.AnchorPane?>

<!-- processing instruction (PI) defines the Java script engine named 'rexx'
 to be used to execute programs (fx:script or in event attributes) -->
<?language rexx?>

<AnchorPane id="AnchorPane" fx:id="idRoot" prefHeight="240.0" prefWidth="480.0"
 styleClass="root" stylesheets="@fxml_02.css"
 xmlns:fx="http://javafx.com/fxml/1">

 <!-- defines entries for ScriptContext bindings, public routine 'klickButton' -->
 <fx:script source="fxml_02_controller.rex" />

 <children>
 <Label fx:id="idLabelRexxStarted" alignment="CENTER" layoutX="50.0"
 layoutY="26.0" minHeight="16" minWidth="69"
 prefHeight="16.0" prefWidth="380.0" styleClass="rexxStarted"
 stylesheets="@fxml_02.css" text="$rexxStarted" />

 <Button fx:id="idButton" layoutX="210.0" layoutY="137.0" onAction=
 "slotDir=arg(arg()) /* last argument added by BSF4ooRexx */;
 say ' /// onAction eventHandler calling routine ''klickButton'' \\\';
 call klickButton slotDir /* now process the event */; "
 text="%clickMe" />

 <Label fx:id="idLabelYear" layoutX="50.0" layoutY="175.0" minHeight="16"
 minWidth="20" style="-fx-background-color:palegoldenrod;" text="%year" />

 <Label fx:id="idLabel" layoutX="95.0" layoutY="175.0" minHeight="16"
 minWidth="49" prefHeight="16.0" prefWidth="335.0"
 style="-fx-background-color: honeydew;" />

 <Label fx:id="idLabelRexxInfo" alignment="CENTER" layoutX="50.0" layoutY="200.0"
 minHeight="16.0" minWidth="49.0" prefHeight="16.0" prefWidth="380.0"
 style="-fx-background-color: skyblue; -fx-cursor: wait;
 -fx-font-family: serif; -fx-font-weight: lighter;"
 text="${rexxInfo}" />
 </children>
</AnchorPane>

Code 9: FXML definitions ("fxml_02.fxml").

translates all text values that start with the special character %. This allows

for the easy creation of internationalizable JavaFX applications!

• fxml_02.fxml: the GUI definition, which uses style attributes for individual

stylings and a styleClass attribute from one of the styles in the stylesheets

attribute, cf. Code 9 above; note: the Rexx code in the onAction attribute of

the idButton spans multiple lines and is enclosed in double quotes, but the

FXMLLoader and the SceneBuilder will fetch it as one single line, therefore it

is necessary to end each Rexx statement with a semicolon. Also, if there are

multiple Rexx statements, then one must not use the line comment "--" (two

consecutive dashes), because after creating one line out of the Rexx

statements everything after the line comment will be ignored by Rexx!

Studying the FXML element definitions shows that the style attribute is used

to individually style the Node objects. The idRoot and idLabelRexxStarted

2017-11-17 16:10:37 22/43

/* Java-FX CSS definitions, cf. <http://docs.oracle.com/javafx/2/get_started/css.htm>,
 especially: <https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html>
*/

/* define the background of the scene, will be applied to AnchorPane: */
.root {
 -fx-background-image: url("bsf4oorexx_032.png");
 -fx-background-color: LightGoldenRodYellow;
}

/* this will style the Label elements */
.label {
 -fx-font-size: 11px;
 -fx-font-weight: bold;
 -fx-text-fill: #333333;
 -fx-effect: dropshadow(gaussian , rgba(255,255,255,0.5) , 0,0,0,1);
 -fx-border-color: red;
 -fx-border-radius: 3px;
 -fx-border-style: dashed;
 -fx-border-width: 1px;
}

/* this will style the Button element: */
.button {
 -fx-text-fill: royalblue;
 -fx-font-weight: 900;
}

/* this will apply alpha (fourth value) to get the background to shine thru the
 label with the styleClass="rexxStarted" */
.rexxStarted {
 -fx-background-color: rgb(253, 245, 230, 0.75) ;
 -fx-text-fill: royalblue;
}

Code 10: The CSS definitions ("fxml_02.css").

define a styleClass attribute whose value is used to lookup a class definition

in the stylesheets listed in the stylesheets attribute which controls the

rendering of these nodes. Figure 7 on page 25 below shows how the

SceneBuilder displays this FXML file.

• fxml_02.css: the CSS definitions for the GUI (see Code 10 above), that is e.g.

responsible for the tiled background using the image "bsf4oorexx_032.png"

(.root), or for applying transparency to the idLabelRexxStarted label such

2017-11-17 16:10:37 23/43

slotDir=arg(arg()) -- last argument is the slotDir argument, added by BSF4ooRexx
started=.dateTime~new -- get current date and time
parse source s -- get the source information and show it
say "just arrived at" pp(started)": parse source ->" pp(s)

sc=slotDir~scriptContext -- get the ScriptContext entry from slotDir
 -- add the attribute "rexxStarted" to the ScriptContext's GLOBAL_SCOPE Bindings
sc~setAttribute("rexxStarted", "Rexx started at:" started~string, sc~global_scope)
parse version v -- get Rexx version, display it in the "rexxInfo" label
sc~setAttribute("rexxInfo", "Rexx version:" v, sc~global_scope)
 -- set attribute at ENGINE_SCOPE (visible for this script engine only):
sc~setAttribute("title", "--> -> >", sc~engine_scope)
 -- set attribute at global scope (visible for all script engines):
sc~setAttribute("count", "1", sc~global_scope)

/* -- */
/* This routine will be called from the Rexx code defined with the "onAction" event
 attribute; cf. the JavaFX control with the id "idButton" in the fxml_02.fxml */
::routine klickButton public
 use arg slotDir -- fetch the slotDir argument
 scriptContext=slotDir~scriptContext -- get the slotDir entry
 /* @get(idLabel count title) */

 rexxInfo="Updated from public Rexx routine 'klickButton'."
 if count//2=0 then rexxInfo=rexxInfo~reverse -- if even, reverse the current text
 /* @set(rexxInfo) */ -- update the "rexxInfo" attribute, will auto update label

 /* show the currently defined attributes in the default ScriptContext's scopes */
 say "getting all attributes from all ScriptContext's scopes..."
 do sc over .array~of(100, 200)
 say "ScriptContext scope:" pp(sc) pp(iif(sc=100,'ENGINE','GLOBAL')"_SCOPE")":"
 bin=scriptContext~getBindings(sc)
 if bin=.nil then iterate -- inexistent scope
 keys=bin~keySet -- get kay values
 it=keys~makearray -- get the keys as a Rexx array
 do key over it~sortWith(.CaselessComparator~new) -- sort keys caselessly
 val=bin~get(key) -- fetch the key's value
 str=" " pp(key)~left(31,".") pp(val)
 if key="location" then str=str "~toString="pp(val~toString)
 say str
 end
 if sc=100 then say "-"~copies(86); else say "="~copies(86)
 end
 -- change the text of idLabel
 idLabel~setText(title .dateTime~new~string "(count #" count")")
 count+=1 -- increase counter
 /* @set(count) */ -- save it in the ScriptContext bindings
 say

Code 11: The Rexx controller ("fxml_02_controller.rex").

that the tiled background shines through that label's background.

• fxml_02_controller.rex: the controller (see Code 11 above): when first

executed by the FXMLLoader the "prolog" part of the program will create

four attributes in the ScriptContext bindings that are being referred to in

the FXML elements, "rexxStarted" and "rexxInfo", as well as two entries,

"title" and "count" that are used in the klickButton routine, whenever an

onAction event triggers.

The klickButton routine uses RexxScript annotations for getting and setting

attributes from/in the ScriptContext bindings. The count value from the

ScriptContext bindings gets fetched, increased and written back. If the

count value is even then the value for the "rexxInfo" attribute will be

reversed and automatically cause the idLabelRexxInfo Node to update. As it

2017-11-17 16:10:37 24/43

 /* usage: fxml_02.rex [de] ... "de" will cause fxml_02_de.properties to be used */
parse arg locale .

 -- create Rexx object that will control the FXML set up with or without local
if locale<>"" then rxApp=.rexxApplication~new(locale)
 else rxApp=.rexxApplication~new

 -- instantiate the abstract JavaFX class, abstract "start" method implemented in Rexx
jrxApp=BsfCreateRexxProxy(rxApp,,"javafx.application.Application")
 -- launch the application, which will invoke the methdos "init" followed by "start"
jrxApp~launch(jrxApp~getClass, .nil) -- need to use this version of launch in order to work
say center(" after jrxApp~launch ", 70, "-")

::requires "BSF.CLS" -- get Java support

/* implements the abstract method "start" of javafx.application.Application */
::class RexxApplication

::method init -- constructor to fetch the locale ("de": "fxml_01_de.properties")
 expose locale -- get direct access to attribute
 use strict arg locale="en" -- if omitted use "fxml_01_en.properties"

 /* loads the FXML file (doing translations), sets up a scene for it and shows it */
::method start -- implementation in Rexx
 expose locale -- get direct access to attribute
 use arg stage -- we get the stage to use for our UI

 -- create a file URL for fxml_02.fxml file (hence the protocol "file:")
 fxmlUrl=.bsf~new("java.net.URL", "file:fxml_02.fxml")
 jLocale=.bsf~new("java.util.Locale", locale) -- get the desired Locale
 jRB=bsf.importClass("java.util.ResourceBundle")~getBundle("fxml_02", jLocale)

 rootNode=bsf.loadClass("javafx.fxml.FXMLLoader")~load(fxmlUrl, jRB)
 scene=.bsf~new("javafx.scene.Scene", rootNode) -- create a scene from the tree
 stage~setScene(scene) -- set our scene on stage
 stage~title="A Crazy FXML Rexx Application" -- set the title for the stage
 img=.bsf~new("javafx.scene.image.Image", "oorexx_032.png") -- create Image
 stage~getIcons~add(img) -- use image as the application icon
 stage~show -- show the stage with the scene

Code 12: A simple JavaFX GUI application with FXML in ooRexx ("fxml_02.rex").

is interesting to see the content of the ScriptContext bindings on each

invocation, the ENGINE_SCOPE and GLOBAL_SCOPE bindings will get queried

for their keys which then get sorted caselessly and displayed with their

current values.

• fxml_02_en_properties, fxml_02_de.properties: text files that contain the

English ("en") and German ("de") translations for the idLabelYear text value

"%year" (de: "year = Jahr->", en: "year = Year->") and the idButton text value

"%clickMe" (de: "clickMe = Drück mich!", en: "clickMe = Click Me!") used in

fxml_02.fxml, cf. Code 8 on page 20 above,

• oorexx_032.png: the image (32 by 32 pixels) used as the application icon, cf

Figure 5 on page 20 above.

Running the Rexx program fxml_02.rex as depicted in Code 12 on page 24 above,

will create a little dialog that changes with every click of the button as shown in

Figure 8 on page 26 below, yielding the output displayed in Output 2 on page 27

below.

As can be seen in the output the filename supplied to the parse source keyword

statement is not fxml_02_controller.rex. The reason is that in JavaFX 8 at the time

2017-11-17 16:10:37 25/43

Figure 7: SceneBuilder editing "fxml_02.fxml" (Code 9 on page 21 above).

2017-11-17 16:10:37 26/43

Figure 8: Running "fxml_02.rex" and clicking twice (GUIs).

of writing unfortunately the FXMLLoader does not store the filename

fxml_02_controller.rex under the name javax.script.filename in the ScriptContext

ENGINE_SCOPE bindings that is given in the src attribute of the fx:script element

in fxml_02.fxml in Code 9 on page 21 above. As a result the RexxScriptEngine will

create an artificial filename and if it guesses that the Rexx program got executed

via FXMLLoader then it supplies the name given in the location attribute in the

2017-11-17 16:10:37 27/43

E:\fxml_02>rexx fxml_02.rex
REXXout>just arrived at [2017-11-02T19:47:35.611000]: parse source -> [WindowsNT SUBROUTINE
rexx_invoked_via_[fxml_02.fxml]_at_2017_11_02T18_47_35_584Z.rex]
REXXout> /// onAction eventHandler calling routine 'klickButton' \\\
REXXout>getting all attributes from all ScriptContext's scopes...
REXXout>ScriptContext scope: [100] [ENGINE_SCOPE]:
REXXout> [event]........................ [javafx.event.ActionEvent@10c0221]
REXXout> [javax.script.engine].......... [Open Object Rexx (ooRexx)]
REXXout> [javax.script.engine_version].. [100.20170923]
REXXout> [javax.script.language]........ [ooRexx]
REXXout> [javax.script.language_version] [REXX-ooRexx_5.0.0(MT)_32-bit 6.05 19 Oct 2017]
REXXout> [javax.script.name]............ [Rexx]
REXXout> [title]........................ [--> -> >]
REXXout>--
REXXout>ScriptContext scope: [200] [GLOBAL_SCOPE]:
REXXout> [count]........................ [1]
REXXout> [idButton]..................... [javafx.scene.control.Button@1c62fae]
REXXout> [idLabel]...................... [javafx.scene.control.Label@12e9675]
REXXout> [idLabelRexxInfo].............. [javafx.scene.control.Label@15a1ca1]
REXXout> [idLabelRexxStarted]........... [javafx.scene.control.Label@7683c9]
REXXout> [idLabelYear].................. [javafx.scene.control.Label@137e560]
REXXout> [idRoot]....................... [javafx.scene.layout.AnchorPane@100fa1b]
REXXout> [location]..................... [java.net.URL@1a9d3d7] ~toString=[file:fxml_02.fxml]
REXXout> [resources].................... [java.util.PropertyResourceBundle@14e2f70]
REXXout> [rexxInfo]..................... [Updated from public Rexx routine 'klickButton'.]
REXXout> [rexxStarted].................. [Rexx started at: 2017-11-02T19:47:35.611000]
REXXout>==
REXXout>
REXXout> /// onAction eventHandler calling routine 'klickButton' \\\
REXXout>getting all attributes from all ScriptContext's scopes...
REXXout>ScriptContext scope: [100] [ENGINE_SCOPE]:
REXXout> [event]........................ [javafx.event.ActionEvent@117e598]
REXXout> [javax.script.engine].......... [Open Object Rexx (ooRexx)]
REXXout> [javax.script.engine_version].. [100.20170923]
REXXout> [javax.script.language]........ [ooRexx]
REXXout> [javax.script.language_version] [REXX-ooRexx_5.0.0(MT)_32-bit 6.05 19 Oct 2017]
REXXout> [javax.script.name]............ [Rexx]
REXXout> [title]........................ [--> -> >]
REXXout>--
REXXout>ScriptContext scope: [200] [GLOBAL_SCOPE]:
REXXout> [count]........................ [2]
REXXout> [idButton]..................... [javafx.scene.control.Button@1c62fae]
REXXout> [idLabel]...................... [javafx.scene.control.Label@12e9675]
REXXout> [idLabelRexxInfo].............. [javafx.scene.control.Label@15a1ca1]
REXXout> [idLabelRexxStarted]........... [javafx.scene.control.Label@7683c9]
REXXout> [idLabelYear].................. [javafx.scene.control.Label@137e560]
REXXout> [idRoot]....................... [javafx.scene.layout.AnchorPane@100fa1b]
REXXout> [location]..................... [java.net.URL@1a9d3d7] ~toString=[file:fxml_02.fxml]
REXXout> [resources].................... [java.util.PropertyResourceBundle@14e2f70]
REXXout> [rexxInfo]..................... [.'nottuBkcilk' enituor xxeR cilbup morf detadpU]
REXXout> [rexxStarted].................. [Rexx started at: 2017-11-02T19:47:35.611000]
REXXout>==
REXXout>
------------------------ after jrxApp~launch -------------------------

Output 2: Output of running "fxml_02.rex" and clicking twice (console output).

GLOBAL_SCOPE ScriptContext bindings to ease debugging in multi FXML file

scenarios.20

Studying the three dialogs and the corresponding output one can see that the

counter gets maintained in the ScriptContext's GLOBAL_SCOPE bindings.

The event object of the JavaFX event which causes the onAction handler to run

that eventually invokes the public routine klickButton is contained in the

ScriptContext's GLOBAL_SCOPE bindings and changes after each button click.

It may be interesting to note, that the FXML file's name is supplied in the attribute

location which gets stored together with those JavaFX GUI objects that have a

defined fx:id attribute value with the ScriptContext's GLOBAL_SCOPE bindings.

3.2.5 A Rather Complex JavaFX GUI Application in ooRexx

When JavaFX was introduced Sun (later bought by Oracle) created a set of tutorials

to teach the new concepts, among them a little FXML application for an address

book in JavaFX 2 [37] which later got updated to reflect JavaFX 8 [38]. A Swiss

technical writer, Marco Jakob, rewrote the address book example and

demonstrates among other things how easy JavaFX CSS formatting can be applied

as well as using a JavaFX bar chart control.[39]

BSF4ooRexx comes with quite a few FXML examples in ooRexx, that demonstrate

how Rexx can be used to take advantage of JavaFX and FXML. Among these

samples there is one stored in "bsf4oorexx/samples/JavaFX/fxml_99"21. This

ooRexx application implements [39] and in addition adds a printing feature.

Unlike [39] the address book data gets stored in and read from a JSON22 file.

Giving the functionality of the the application and the GUIs it is astounding that it

only takes approximately 1,270 lines of ooRexx code to implement it.

20The FXMLLoader class should use the fx:script element's source attribute value as the filename
and add an entry named javax.script.filename into the ENGINE_SCOPE ScriptContext bindings to
allow script engines to supply that value to the programs that the ScriptEngine executes.

21One can navigate there with an explorer, if one chooses the BSF4ooRexx menu item named
"Samples", then double-clicks on the file index.html, then double-clicks the links "JavaFX" and
"fxml_99". All directories in the samples subdirectory contain an index.html file that briefly
explains all samples and allows one to navigate via links to its subdirectories (or parent
directory).

22The ooRexx package json-rgf.cls is based on ooRexx 5 json.cls, but stores the data in a legible
("human centric") format.

2017-11-17 16:10:37 28/43

In this case all GUI controllers are stored in the MainApp.rex program (package),

each implemented as an ooRexx class. Besides demonstrating this possibility it

also allows one to compare the Rexx solution with the Java solution in [39].

As the JavaFX TableView control maintains the data it displays it is necessary to

create the ooRexx Person class such that the JavaFX TableView control can

interact with it. This is done by defining the attributes as JavaFX properties. Each

2017-11-17 16:10:37 29/43

Figure 9: Running "MainApp.rex", overview (TableView) and edit windows.

2017-11-17 16:10:37 30/43

Figure 10: Running "MainApp.rex", statistics and print preview windows.

person is then added to an arrayObservableList received from the JavaFX utility

class javafx.collections.FXCollections, which is the ObservableList that the

TableView uses for the GUI. In addition to the tutorial in [39] the ooRexx solution

also demonstrates how a double-click on a cell will be used to open the edit

window.

The added print demonstration takes advantage of the javafx.scene.web.-

WebView23 class which renders the print data supplied as HTML marked up text

according to the defined style sheet, which intentionally does not use the original

dark theme.

4 Roundup and Outlook

This article introduced JavaFX, its concepts and its core features, and

demonstrates them with ooRexx programs that exploit the ooRexx-Java-bridge

BSF4ooRexx. The presented ooRexx programs are part of the BSF4ooRexx

distribution and can be found in its samples/JavaFX subdirectories.

One challenge when developing ooRexx JavaFX applications is the mapping of

Java concepts into ooRexx. The JavaFX ooRexx sample programs help in

understanding the principles that get applied. In essence one needs to find out

which Java and JavaFX interface classes are needed and then implement those

interfaces in ooRexx classes and wrap up its instances with the external Rexx

function BsfCreateRexxProxy() which is implemented in BSF4ooRexx. The resulting

Java object, encapsulating a Rexx object, is then supplied as the Java object for

call-backs to the appropriate Java methods, ultimately causing the appropriate

Rexx method to run.

JavaFX Java applications can be stored in a Java archive (filetype ".jar", a form of a

zip archive) and can be directly started with the "java -jar" variant of running Java

applications. The Java developer kit's javapackager [43] utility is used for creating

such self-running Java archives. It would great, if such a utility could be conceived

for running JavaFX applications that are implemented in any javax.script scripting

language, such as BSF4ooRexx' RexxScript. [1]

23This class actually uses the WebEngine [42] class to realize the core of a web browser!

2017-11-17 16:10:38 31/43

A References

[1] Flatscher R.G.: "'RexxScript' – Rexx Scripts Hosted and Evaluated by Java

(Package javax.script)", in: Proceedings of the "The 2017 International Rexx

Symposium", Amsterdam, The Netherlands, April 9th – 12th, 2017. URL (as of

2017-10-31): http://www.rexxla.org/events/2017/presentations/201704-RexxScript-Article.pdf

[2] Javadocs for the Java package java.awt (as of 2017-04-04):

https://docs.oracle.com/javase/8/docs/api/java/awt/package-summary.html

[3] Javadocs for the Java package javax.swing (as of 2017-04-04):

https://docs.oracle.com/javase/8/docs/api/javax/swing/package-summary.html

[4] Java tutorial "Modifying the Look and Feel" (as of 2017-04-04):

https://docs.oracle.com/javase/tutorial/uiswing/lookandfeel/index.html

[5] Javadocs for JavaFX 8 (as of 2017-04-04):

https://docs.oracle.com/javase/8/javafx/api/toc.htm

[6] Javadocs for javafx.beans.property.Property (as of 2017-04-04):

https://docs.oracle.com/javase/8/javafx/api/javafx/beans/property/Property.html

[7] Javadocs for javafx.beans.property.SimpleIntegerProperty (as of 2017-04-04):

https://docs.oracle.com/javase/8/javafx/api/javafx/beans/property/SimpleIntegerProperty.html

[8] Javadocs for javafx.beans.binding.IntegerExpression (as of 2017-04-04):

https://docs.oracle.com/javase/8/javafx/api/javafx/beans/binding/IntegerExpression.html

[9] Java tutorial "JavaFX: Handling Events" (as of 2017-04-04):

https://docs.oracle.com/javase/8/javafx/events-tutorial/title.htm

[10] Java tutorial "Lesson: Concurrency in Swing" (as of 2017-04-04):

https://docs.oracle.com/javase/tutorial/uiswing/concurrency/index.html

[11] Java documentation "AWT Threading Issues" (as of 2017-04-04):

https://docs.oracle.com/javase/8/docs/api/java/awt/doc-files/AWTThreadIssues.html

[12] Javadocs for javafx.application.Platform (as of 2017-04-04):

https://docs.oracle.com/javase/8/javafx/api/javafx/application/Platform.html

[13] Javadocs for javafx.stage.Stage (as of 2017-04-04):

https://docs.oracle.com/javase/8/javafx/api/javafx/stage/Stage.html

[14] Javadocs for javafx.stage.Scene (as of 2017-04-04):

https://docs.oracle.com/javase/8/javafx/api/javafx/stage/Stage.html

[15] Javadocs for the package javafx.scene (as of 2017-04-04):

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/package-summary.html

[16] Javadocs for javafx.stage.Node (as of 2017-04-04):

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html

2017-11-17 16:10:38 32/43

[17] Javadocs for javafx.stage.Node (as of 2017-04-04):

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html

[18] World Wide Web Consortium "Document Object Model (DOM)" (as of 2017-10-30):

https://www.w3.org/DOM/

[19] World Wide Web Consortium "Hypertext Markup Language (HTML)" (as of 2017-10-

30): https://www.w3.org/html/

[20] World Wide Web Consortium "Cascading Style Sheets (CSS)" (as of 2017-10-30):

https://www.w3.org/Style/CSS/

[21] "JavaFX CSS Reference Guide" (as of 2017-04-04):

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html

[22] Homepage "WebKit" (as of 2017-10-30): https://webkit.org/

[23] Javadocs for javafx.application.Application (as of 2017-04-04):

https://docs.oracle.com/javase/8/javafx/api/javafx/application/Application.html

[24] Flatscher R.G.: "The 2009 Edition of BSF4Rexx Part I and II", slides (as of 2017-

04-04): http://www.rexxla.org/events/2009/presentations/01_Monday/Mon_Session_3/

[25] Flatscher R.G.: 'The ooRexx Package "rgf_util2.rex"', in: Proceedings of the “The

2009 International Rexx Symposium”, Chilworth, England, Great Britain, May

18th – May 21st 2009. URL (as of 2017-04-01):

http://www.rexxla.org/events/2009/presentations/04_Thursday/Thu_Session_2/

[26] Wikipedia "Model-view-controller (MVC)" (as of 2017-04-04):

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

[27] Java documentation "Introduction to FXML" (as of 2017-04-04):

https://docs.oracle.com/javase/8/javafx/api/javafx/fxml/doc-files/introduction_to_fxml.html

[28] WWW-Site "ControlsFX Features" (as of 2017-04-04):

http://fxexperience.com/controlsfx/features/

[29] World Wide Web Consortium "Extensible Markup Language (XML) 1.0 (Fifth Edition)"

(as of 2017-04-04): https://www.w3.org/TR/xml/

[30] Wikipedia "Processing Instruction" (as of 2017-04-04):

https://en.wikipedia.org/wiki/Processing_Instruction

[31] Java documentation "JavaFX Scene Builder: Getting Started with JavaFX Scene

Builder" (as of 2017-04-04): https://docs.oracle.com/javase/8/scene-builder-2/get-started-

tutorial/index.html

[32] Gluon's download page for their SceneBuilder distribution (as of 2017-04-04):

http://gluonhq.com/products/scene-builder/

[33] Javadocs for javafx.fxml.FXMLLoader (as of 2017-04-04):

https://docs.oracle.com/javase/8/javafx/api/javafx/fxml/FXMLLoader.html

2017-11-17 16:10:38 33/43

[34] Javadocs for java.util.ResourceBundle (as of 2017-04-04):

https://docs.oracle.com/javase/8/docs/api/java/util/ResourceBundle.html

[35] Java tutorial "Isolating Locale-Specific Data" (as of 2017-04-04):

https://docs.oracle.com/javase/tutorial/i18n/resbundle/index.html

[36] Javadocs for java.util.Locale (as of 2017-04-04):

https://docs.oracle.com/javase/8/docs/api/java/util/Locale.html

[37] JavaFX 2 tutorial "Mastering FXML", "4 Creating an Address Book with FXML" (as of

2017-11-09): https://docs.oracle.com/javafx/2/fxml_get_started/fxml_tutorial_intermediate.htm

[38] JavaFX 8 tutorial "JavaFX: Mastering FXML", "3 Creating an Address Book with FXML"

(as of 2017-11-09): https://docs.oracle.com/javase/8/javafx/fxml-

tutorial/fxml_tutorial_intermediate.htm

[39] Jakob M.: "JavaFX 8 Tutorial" (as of 2017-11-09):

http://code.makery.ch/library/javafx-8-tutorial/

[40] Javadocs for javafx.collections.FXCollections (as of 2017-11-09):

https://docs.oracle.com/javase/8/javafx/api/javafx/collections/FXCollections.html

[41] Javadocs for javafx.scene.web.WebView (as of 2017-11-09):

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/web/WebView.html

[42] Javadocs for javafx.scene.web.WebEngine (as of 2017-11-09):

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/web/WebEngine.html

[43] Java documentation "javapackager", formerly known as "javafxpackager" (as of

2017-11-09): https://docs.oracle.com/javase/8/docs/technotes/tools/unix/javafxpackager.html

2017-11-17 16:10:38 34/43

B Addendum: The Classes FXGuiThread and GUIMessage

The BSF4ooRexx package BSF.CLS implements two public ooRexx classes that

ease interaction with JavaFX GUIs from threads that are not the "JavaFX

Application Thread" (cf.)24, "FXGuiThread" and "GUIMessage".

The public GUIMessage class is modelled after ooRexx' fundamental class

Message, the documentation of which, therefore, applies to GUIMessage. This

class gets employed by the FXGuiThread class, which in some of its methods

returns an instance of this class for the Rexx programmer to become able to

interrogate the current state of the messageName and any result the sending of

the message yielded.

The public FXGuiThread class with its public class methods runLater and

runLaterLatest allows for sending messages later, on the "JavaFX Application

Thread". Both methods expect the following arguments:

• the target (receiver) object (usually some JavaFX object),

• the messageName,

• optionally, if arguments should be supplied:

◦ "I" for "individual", followed by a comma-separated list of arguments,

◦ "A" for "array", followed by an ooRexx Array argument that contains the

arguments

The class methods runLater and runLaterLatest use the GUIMessage class to

create the message that will be sent later on the "JavaFX Application Thread". This

makes it straight-forward and easy for ooRexx programmers to make sure that

any message they send to ooRexx objects will be sent on the GUI thread, from

where updating JavaFX GUIs is safe.

runLater will append the GUIMessage object to the queue of messages to be sent

later. runLaterLatest will do the same, but will remove all GUIMessage objects that

have the same target and messageName from the queue, and append its

GUIMessage object to it, which will be the "latest" incarnation of that intended

GUIMessage.

24Cf. 3.1.2, 'The "JavaFX Application Thread"' on page 4.

2017-11-17 16:10:38 35/43

The nutshell example in this section demonstrates how a Rexx program is able to

update GUI controls using the class FXGuiThread's runLater or runLaterLatest

class methods.

The little application consists of:

• fxml_pb.rex (Code 13 above): the main program which loads the FXML file

fxml_pb.fxml, creates an instance of the Rexx class Worker (defined in

worker.rex) and saves it in the .my.app directory (created by

put_FXID_objects_into.my.app.rex below) for later use in the controller

program (fxml_pb_controller.rex),

2017-11-17 16:10:38 36/43

rxApp=.rexxApplication~new
 -- instantiate the abstract JavaFX class, abstract "start" method implemented in Rexx
jrxApp=BsfCreateRexxProxy(rxApp,,"javafx.application.Application")
 -- launch the application, which will invoke the methdos "init" followed by "start"

signal on syntax -- intercept syntax conditions
jrxApp~launch(jrxApp~getClass, .nil) -- launch the application
say center(" after jrxApp~launch ", 70, "-")
exit

 -- in case something goes foul, use "ppCondition2()" to show all Java exception causes
syntax:
 co=condition('object')
 say "--- oops, something went wrong while executing 'fxml_pb.rex':"
 say ppCondition2(co)

::requires "rgf_util2.rex" -- get access to public routine ppCondition2()

::requires "BSF.CLS" -- get Java support
::requires "worker.rex" -- get access to the Worker class

/* implements the abstract method "start" of javafx.application.Application */
::class RexxApplication

 /* loads the FXML file, sets up a scene and shows it on the stage */
::method start -- implementation in Rexx
 expose locale -- get direct access to attribute
 use arg stage -- we get the stage to use for our UI

 fxmlUrl=.bsf~new("java.net.URL", "file:fxml_pb.fxml")
 rootNode=bsf.loadClass("javafx.fxml.FXMLLoader")~load(fxmlUrl)
 scene=.bsf~new("javafx.scene.Scene", rootNode) -- create a scene from the tree

 -- .my.app (.environment~my.app) created by "put_FXID_objects_into.my.app.rex"
 -- which gets invoked by FXMLLoader when it processes the FXML file "fxml_pb.fxml"
 -- make a worker instance available via .my.app~worker
 .my.app~worker=.worker~new

 stage~setScene(scene) -- set our scene on stage
 stage~title="ProgressBar Demo" -- set the title for the stage
 stage~resizable=.false -- make sure we cannot resize
 stage~show -- show the stage with the scene

Code 13: A nutshell JavaFX GUI application with a progress bar ("fxml_pb.rex").

• fxml_pb.fxml (Code 16 on page 39 below): the FXML file defining the JavaFX

GUI,

• put_FXID_objects_into.my.app.rex (Code 16 on page 39 below): a utility

Rexx program invoked at the end of fxml_pb.fxml which will store all

2017-11-17 16:10:38 37/43

/* called by FXMLLoader on the "FX Application Thread" */

/* initialize JavaFX objects, define public routines for event handling */
fxml=.my.app~fxml_pb.fxml -- get the corresponding FXML Rexx directory

 -- clear label fields
fxml~idLabelCurrent ~text=""
fxml~idLabelStart ~text=""
fxml~idLabelEnd ~text=""
fxml~idLabelDuration~text=""

::routine onActionButtonStart public -- toggle button, start
-- slotDir=arg(arg()) -- supplied by BSF4ooRexx, not needed, but available
 if .my.app~fxml_pb.fxml~idButtonStart~text="Start" then
 .action~setRunning
 else
 .action~setStop

::routine onActionButtonExit public -- exit the application
 bsf.loadClass("javafx.application.Platform")~exit

/* This class allows communication of state with the worker and
 updating the GUI. Therefore its methods must be invoked on
 the "JavaFX Application Thread".
*/
::class Action public
::attribute state class -- states: "idle", "running", "stop"
::method init class
 expose state
 state="idle" -- initialize to "idle"

::method setRunning class -- invoked by pressing "Start" button, starts worker
 expose state
 if state<>"idle" then return -- worker runs already

 fxml=.my.app~fxml_pb.fxml -- get access to JavaFX controls
 fxml~idButtonStart~disable=.true -- do not let user interact with this control
 state="running"

 fxml~idButtonExit~disable=.true
 fxml~idLabelEnd~text =""
 fxml~idLabelDuration~text=""
 fxml~idLabelCurrent~text =""

 now=.dateTime~new
 .my.app~fxml_pb.fxml~startedAt=now -- save Rexx object
 fxml~idLabelStart~text = now "(started)"
 fxml~idButtonStart~text="Stop"

 -- start worker object, supply this class object
 .my.app~worker~go(self) -- supply this class object
 fxml~idButtonStart~disable=.false -- allow interaction again

… continued on next page …

Code 14: Progress bar controller program, part 1 of 2 ("fxml_pb_controller.rex").

JavaFX objects with an fx:id value in the .environment~my.app directory:

the utility will create this entry, if it is not yet defined; it then creates a new

directory, stores all fx:id JavaFX objects in it, and saves it under the name

of the FXML file in .my.app (fxml_pb.fxml). If an entry .my.app~bDebug is

set to .true, then this utility will also list all the ScriptContext scopes and

dump the corresponding bindings to .output.

• fxml_pb_controller.rex (Code 14 on page 37 above and Code 15 above): a

Rexx program invoked at the end of fxml_pb.fxml that initializes the GUI;

and upon return its public routines onActionButtonStart and onAction-

ButtonExit become available.

2017-11-17 16:10:38 38/43

… continued from previous page …

::method setStop class -- invoked by pressing "Stop" button, stops worker
 expose state
 if state<>'running' then return -- not running, cannot stop

 fxml=.my.app~fxml_pb.fxml -- get access to JavaFX controls
 fxml~idButtonStart~disable=.true -- do not let user interact with this control

 state="stop" -- worker will stop and invoke "setIdle" method
 fxml~idButtonStart~text="Stopping..."
 now=.dateTime~new
 fxml~stoppedAt=now -- save Rexx object

::method setIdle class -- invoked by worker on "JavaFX Application Thread"
 expose state
 if wordpos(state,'running stop')=0 then return -- not running, nor stopping, ignore

 fxml=.my.app~fxml_pb.fxml -- get access to JavaFX controls
 fxml~idButtonStart~disable=.true -- do not let user interact with this control

 now=.dateTime~new
 fxml~stoppedAt=now -- save Rexx object

 now =.dateTime~new
 fxml~idLabelEnd~text=now "(ended)"
 duration =now - .my.app~fxml_pb.fxml~startedAt
 fxml~idLabelDuration~text=duration "(duration)"
 if state='stop' then -- indicate user stopped
 do
 current=fxml~idLabelCurrent~text
 fxml~idLabelCurrent~text=current "(interrupted!)"
 end

 state="idle" -- communicate we can be started again
 fxml~idButtonStart~text="Start"
 fxml~idButtonStart~disable=.false -- allow interaction again
 fxml~idButtonExit~disable=.false

Code 15: Progress bar controller program, part 2 of 2 ("fxml_pb_controller.rex").

2017-11-17 16:10:38 39/43

parse source . . thisProg
thisProg=filespec("Name", thisProg)

 -- make sure global Rexx .environment has an entry MY.APP (a Rexx directory)
if \.environment~hasEntry("my.app") then -- not there?
 .environment~setEntry("my.app", .directory~new) -- create it!

bDebug=(.my.app~bDebug=.true) -- set debug mode
if bDebug then say .dateTime~new " ==> ---> arrived in Rexx program" pp(thisProg) "..."

slotDir=arg(arg()) -- get slotDir argument (BSF4ooRexx adds this as the last argument)
scriptContext=slotDir~scriptContext -- get entry "SCRIPTCONTEXT"

GLOBAL_SCOPE=200
 -- "location" will have the URL for the FXML-file
url=scriptContext~getAttribute("location",GLOBAL_SCOPE)
fxmlFileName=filespec("name",url~getFile) -- make sure we only use the filename portion
dir2obj =.directory~new -- will contain all GLOBAL_SCOPE entries
.my.app~setEntry(fxmlFileName,dir2obj) -- add to .My.APP

bindings=scriptContext~getBindings(GLOBAL_SCOPE)
keys=bindings~keySet~makearray -- get the kay values as a Rexx array
do key over keys
 val=bindings~get(key) -- fetch the key's value
 dir2obj ~setEntry(key,val) -- save it in our directory
end

if bDebug then
do
 say "all GLOBAL_SCOPE attributes now available via:" pp(".MY.App~"fxmlFileName)
 say
 -- show all the currently defined attributes in all ScriptContext's scopes
 say "getting all attributes from all ScriptContext's scopes..."
 dir=.directory~new -- known constant names
 dir[100]="ENGINE_SCOPE"
 dir[200]="GLOBAL_SCOPE"
 arr=scriptContext~getScopes~makearray -- get all scopes, turn them into a Rexx array
 do sc over arr --
 str="ScriptContext scope" pp(sc)
 if dir~hasEntry(sc) then str=str "("dir~entry(sc)")"
 say str", available attributes:"
 say
 bin=scriptContext~getBindings(sc)
 if bin=.nil then iterate -- inexistent scope
 keys=bin~keySet -- get kay values
 it=keys~makearray -- get the keys as a Rexx array
 do key over it~sortWith(.CaselessComparator~new) -- sort caselessly
 val=bin~get(key) -- fetch the key's value
 str=""
 if val~isA(.bsf) then str="~toString:" pp(val~toString)
 say " " pp(key)~left(35,".") pp(val) str
 end
 if sc<>arr~lastItem then say "-"~copies(89)
 else say "="~copies(89)
 end
end

if bDebug then
do
 say .dateTime~new " <== <--- returning from program" pp(thisProg) "."
 say
end

Code 16: Utility program "put_FXID_objects_into.my.app.rex".

◦ public routine onActionButtonStart: this routine will check the text of the

button, if it is set to "Start" then the class Action's class method setRun-

ning gets invoked (this will send the go message to .my.app~worker,

supplying the Action class object as an argument to allow direct access

to it), else the message setStop will be sent, which signals the worker via

the Action's class attribute state the change, causing the worker to

prematurely leave the worker's loop.

2017-11-17 16:10:38 40/43

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.control.Button?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.control.ProgressBar?>
<?import javafx.scene.layout.AnchorPane?>

<!-- define the script language for this FXML file -->
<?language rexx?>

<AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity"
 minWidth="-Infinity" prefHeight="219.0" prefWidth="353.0"
 xmlns="http://javafx.com/javafx/8.0.65" xmlns:fx="http://javafx.com/fxml/1">

 <children>
 <Button fx:id="idButtonStart" defaultButton="true" layoutX="62.0" layoutY="41.0"
 mnemonicParsing="false" prefHeight="22.0" prefWidth="83.0"
 onAction="call onActionButtonStart arg(arg())" text="Start" />

 <Button fx:id="idButtonExit" cancelButton="true" layoutX="210.0" layoutY="41.0"
 mnemonicParsing="false" prefHeight="22.0" prefWidth="83.0"
 onAction="call onActionButtonExit arg(arg())" text="Exit" />

 <ProgressBar fx:id="idProgressBar" layoutX="23.0" layoutY="80.0" prefHeight="17.0"
 prefWidth="311.0" progress="0.0" />

 <Label fx:id="idLabelCurrent" contentDisplay="CENTER" layoutX="22.0"
 layoutY="110.0" prefHeight="14.0" prefWidth="311.0"
 style="-fx-alignment: center;" text="lblCurrent" />

 <Label fx:id="idLabelStart" contentDisplay="CENTER" layoutX="21.0" layoutY="134.0"
 prefHeight="14.0" prefWidth="311.0" style="-fx-alignment: center;"
 text="lblStart" />

 <Label fx:id="idLabelEnd" layoutX="21.0" layoutY="148.0" prefHeight="14.0"
 prefWidth="311.0" style="-fx-alignment: center;" text="lblEnd" />

 <Label fx:id="idLabelDuration" layoutX="23.0" layoutY="170.0" prefHeight="14.0"
 prefWidth="311.0" style="-fx-alignment: center;" text="lblDuration" />
 </children>

 <!-- save all fx:id objects in ".environment~my.app~fxml_pb.fxml" -->
 <fx:script source="put_FXID_objects_into.my.app.rex" />

 <!-- run controller (initializes GUI, defines public routines and class) -->
 <fx:script source="fxml_pb_controller.rex" />
</AnchorPane>

Code 17: FXML definitions ("fxml_pb.fxml").

◦ public routine onActionButtonExit: this routine will invoke the exit

method of the javafx.application.Platform class, which will cause JavaFX

to be shut down and cause the blocked start method in the class

RexxApplication (fxml_pb.rex) to continue (and to return), allowing the

main Rexx program to end gracefully.

◦ public class Action: this class defines the class attribute named state and

three class methods that manage the GUI:

▪ setRunning: initializes the GUI, disables the idButtonExit button,

renames the text of idButtonStart to "Stop", changes the class

attribute state to "running" and finally sends the go message to the

.my.app~worker to start the work,

▪ setStop: changes the class attribute state to "stop" to signal the

worker that the user wishes to stop the program and changes the text

of idButtonStart to "Stopping...",

▪ SetIdle: updates the GUI, changes the class attribute state to "idle",

renames idButtonStart back to the original value "Start" and re-

enables the idButtonExit button.

2017-11-17 16:10:38 41/43

::requires "BSF.CLS"

::class Worker public

::method go
 use arg clzAction -- get class object

 reply -- return to caller, keep working on a separate thread
 fxml=.my.app~fxml_pb.fxml -- get the corresponding FXML Rexx directory
 pb =fxml~idProgressBar
 lblCurrent=fxml~idLabelCurrent

 -- real work would be done in the loop, such that updates to the
 -- progress bar need to be possible from there, hence runLater[Latest]
 do i=1 to 100 while clzAction~state="running"
 -- real work would go here

 -- update GUI controls on the "JavaFX Application Thread"
 .FXGuiThread~runLaterLatest(pb, "setProgress", "individual", box("Double",i/100))
 .FXGuiThread~runLaterLatest(lblCurrent, "setText", "i", i "%")
 call SysSleep 0.01
 end
 -- we need to send the message on the "JavaFX Application Thread"
 msg=.FXGuiThread~runLater(clzAction, "setIdle")
 res=msg~result -- this blocks until message was executed
 return

Code 18: Updating the GUI with runLater[Latest] ("worker.rex").

• worker.rex (Code 18 on page 41 above): this program defines the class

Worker and its go method that will receive the Action class object and start

2017-11-17 16:10:38 42/43

Figure 11: ProgressBar GUI screenshots.

the work after receiving the go message from the GUI controller

(fxml_pb_controller.rex). It will loop 100 times and update the GUI controls

idProgressBar and idLabelCurrent using runLaterLatest to set the values in

the "JavaFX Application Thread" later. The loop can be terminated

prematurely, if the Action's class attribute state changes its value to

anything else from "running". After the loop the Action's class method

setIdle will be invoked on the "JavaFX Application Thread" with runLater and

this time the resulting GUIMessage object will be fetched and assigned to

the variable msg. Sending msg the message result will block, until the

message object for sending setIdle was run later.

Figure 11 on page 42 above displays the GUI in four different states:

• before starting the worker,

• after running the worker,

• while interrupting a running worker in the middle of its work, and

• after interrupting a running worker in the middle of its work.

2017-11-17 16:10:36 43/43

	1 Introduction
	2 Brief History
	3 JavaFX
	3.1 Concepts
	3.1.1 JavaFX Interface Class "Property"
	3.1.2 The "JavaFX Application Thread"
	3.1.3 JavaFX Stages and JavaFX Scenes
	3.1.4 DOM and CSS
	3.1.5 JavaFX Abstract Class "Application"
	3.1.6 Model View Controller (MVC) Pattern
	3.1.7 Creating a Simple JavaFX GUI Dialog Application with ooRexx

	3.2 Defining Scenes in FXML (FX Markup Language)
	3.2.1 SceneBuilder
	3.2.2 The JavaFX "FXMLLoader" Class
	3.2.2.1 Defining FXML Controller that Are Implemented in Rexx
	3.2.2.2 Special Processing of "text" Attribute Values

	3.2.3 Creating a Simple JavaFX GUI Application with FXML in ooRexx
	3.2.4 A More Advanced JavaFX GUI Application with FXML in ooRexx
	3.2.5 A Rather Complex JavaFX GUI Application in ooRexx

	4 Roundup and Outlook
	A References
	[1] Flatscher R.G.: "'RexxScript' – Rexx Scripts Hosted and Evaluated by Java (Package javax.script)", in: Proceedings of the "The 2017 International Rexx Symposium", Amsterdam, The Netherlands, April 9th – 12th, 2017. URL (as of 2017-10-31): http://www.rexxla.org/events/2017/presentations/201704-RexxScript-Article.pdf
	[2] Javadocs for the Java package java.awt (as of 2017-04-04): https://docs.oracle.com/javase/8/docs/api/java/awt/package-summary.html
	[3] Javadocs for the Java package javax.swing (as of 2017-04-04): https://docs.oracle.com/javase/8/docs/api/javax/swing/package-summary.html
	[4] Java tutorial "Modifying the Look and Feel" (as of 2017-04-04): https://docs.oracle.com/javase/tutorial/uiswing/lookandfeel/index.html
	[5] Javadocs for JavaFX 8 (as of 2017-04-04): https://docs.oracle.com/javase/8/javafx/api/toc.htm
	[6] Javadocs for javafx.beans.property.Property (as of 2017-04-04): https://docs.oracle.com/javase/8/javafx/api/javafx/beans/property/Property.html
	[7] Javadocs for javafx.beans.property.SimpleIntegerProperty (as of 2017-04-04): https://docs.oracle.com/javase/8/javafx/api/javafx/beans/property/SimpleIntegerProperty.html
	[8] Javadocs for javafx.beans.binding.IntegerExpression (as of 2017-04-04): https://docs.oracle.com/javase/8/javafx/api/javafx/beans/binding/IntegerExpression.html
	[9] Java tutorial "JavaFX: Handling Events" (as of 2017-04-04): https://docs.oracle.com/javase/8/javafx/events-tutorial/title.htm
	[10] Java tutorial "Lesson: Concurrency in Swing" (as of 2017-04-04): https://docs.oracle.com/javase/tutorial/uiswing/concurrency/index.html
	[11] Java documentation "AWT Threading Issues" (as of 2017-04-04): https://docs.oracle.com/javase/8/docs/api/java/awt/doc-files/AWTThreadIssues.html
	[12] Javadocs for javafx.application.Platform (as of 2017-04-04): https://docs.oracle.com/javase/8/javafx/api/javafx/application/Platform.html
	[13] Javadocs for javafx.stage.Stage (as of 2017-04-04): https://docs.oracle.com/javase/8/javafx/api/javafx/stage/Stage.html
	[14] Javadocs for javafx.stage.Scene (as of 2017-04-04): https://docs.oracle.com/javase/8/javafx/api/javafx/stage/Stage.html
	[15] Javadocs for the package javafx.scene (as of 2017-04-04): https://docs.oracle.com/javase/8/javafx/api/javafx/scene/package-summary.html
	[16] Javadocs for javafx.stage.Node (as of 2017-04-04): https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html
	[17] Javadocs for javafx.stage.Node (as of 2017-04-04): https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html
	[18] World Wide Web Consortium "Document Object Model (DOM)" (as of 2017-10-30): https://www.w3.org/DOM/
	[19] World Wide Web Consortium "Hypertext Markup Language (HTML)" (as of 2017-10-30): https://www.w3.org/html/
	[20] World Wide Web Consortium "Cascading Style Sheets (CSS)" (as of 2017-10-30): https://www.w3.org/Style/CSS/
	[21] "JavaFX CSS Reference Guide" (as of 2017-04-04): https://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html
	[22] Homepage "WebKit" (as of 2017-10-30): https://webkit.org/
	[23] Javadocs for javafx.application.Application (as of 2017-04-04): https://docs.oracle.com/javase/8/javafx/api/javafx/application/Application.html
	[24] Flatscher R.G.: "The 2009 Edition of BSF4Rexx Part I and II", slides (as of 2017-04-04): http://www.rexxla.org/events/2009/presentations/01_Monday/Mon_Session_3/
	[25] Flatscher R.G.: 'The ooRexx Package "rgf_util2.rex"', in: Proceedings of the “The 2009 International Rexx Symposium”, Chilworth, England, Great Britain, May 18th – May 21st 2009. URL (as of 2017-04-01): http://www.rexxla.org/events/2009/presentations/04_Thursday/Thu_Session_2/
	[26] Wikipedia "Model-view-controller (MVC)" (as of 2017-04-04): https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
	[27] Java documentation "Introduction to FXML" (as of 2017-04-04): https://docs.oracle.com/javase/8/javafx/api/javafx/fxml/doc-files/introduction_to_fxml.html
	[28] WWW-Site "ControlsFX Features" (as of 2017-04-04): http://fxexperience.com/controlsfx/features/
	[29] World Wide Web Consortium "Extensible Markup Language (XML) 1.0 (Fifth Edition)" (as of 2017-04-04): https://www.w3.org/TR/xml/
	[30] Wikipedia "Processing Instruction" (as of 2017-04-04): https://en.wikipedia.org/wiki/Processing_Instruction
	[31] Java documentation "JavaFX Scene Builder: Getting Started with JavaFX Scene Builder" (as of 2017-04-04): https://docs.oracle.com/javase/8/scene-builder-2/get-started-tutorial/index.html
	[32] Gluon's download page for their SceneBuilder distribution (as of 2017-04-04): http://gluonhq.com/products/scene-builder/
	[33] Javadocs for javafx.fxml.FXMLLoader (as of 2017-04-04): https://docs.oracle.com/javase/8/javafx/api/javafx/fxml/FXMLLoader.html
	[34] Javadocs for java.util.ResourceBundle (as of 2017-04-04): https://docs.oracle.com/javase/8/docs/api/java/util/ResourceBundle.html
	[35] Java tutorial "Isolating Locale-Specific Data" (as of 2017-04-04): https://docs.oracle.com/javase/tutorial/i18n/resbundle/index.html
	[36] Javadocs for java.util.Locale (as of 2017-04-04): https://docs.oracle.com/javase/8/docs/api/java/util/Locale.html
	[37] JavaFX 2 tutorial "Mastering FXML", "4 Creating an Address Book with FXML" (as of 2017-11-09): https://docs.oracle.com/javafx/2/fxml_get_started/fxml_tutorial_intermediate.htm
	[38] JavaFX 8 tutorial "JavaFX: Mastering FXML", "3 Creating an Address Book with FXML" (as of 2017-11-09): https://docs.oracle.com/javase/8/javafx/fxml-tutorial/fxml_tutorial_intermediate.htm
	[39] Jakob M.: "JavaFX 8 Tutorial" (as of 2017-11-09): http://code.makery.ch/library/javafx-8-tutorial/
	[40] Javadocs for javafx.collections.FXCollections (as of 2017-11-09): https://docs.oracle.com/javase/8/javafx/api/javafx/collections/FXCollections.html
	[41] Javadocs for javafx.scene.web.WebView (as of 2017-11-09): https://docs.oracle.com/javase/8/javafx/api/javafx/scene/web/WebView.html
	[42] Javadocs for javafx.scene.web.WebEngine (as of 2017-11-09): https://docs.oracle.com/javase/8/javafx/api/javafx/scene/web/WebEngine.html
	[43] Java documentation "javapackager", formerly known as "javafxpackager" (as of 2017-11-09): https://docs.oracle.com/javase/8/docs/technotes/tools/unix/javafxpackager.html
	B Addendum: The Classes FXGuiThread and GUIMessage

