
IBM z Systems

IBM Rexx Language Update:
Classic Rexx and The Rexx Compiler

Virgil Hein IBM
vhein@us.ibm.com

April 2017

mailto:vhein@us.ibm.com

IBM z Systems

Disclaimers

2 IBM Rexx Language Update: Classic Rexx and The Rexx Compiler © 2014, 2016 IBM Corporation

 The information contained in this presentation is provided for
informational purposes only.

 While efforts were made to verify the completeness and accuracy of
the information contained in this presentation, it is provided “as is”,
without warranty of any kind, express or implied.

 In addition, this information is based on IBM’s current product plans
and strategy, which are subject to change by IBM without notice.

 IBM shall not be responsible for any damages arising out of the use
of, or otherwise related to, this presentation or any other
documentation.

 Nothing contained in this presentation is intended to, or shall have
the effect of:

• Creating any warranty or representation from IBM (or its affiliates or
its or their suppliers and/or licensors); or

• Altering the terms and conditions of the applicable license agreement
governing the use of IBM software.

IBM z Systems

Agenda

3 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 REXX products
 External environments and interfaces
 Key functions and instructions
 REXX compound variables vs. data stack
 I/O
 Troubleshooting
 Programming style and techniques
 REXX Enhancements (z/OS)

IBM z Systems

REXX Interpreter and Libraries

4 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 The Interpreter executes (interprets) REXX code “line by line”
• Included in all z/OS and z/VM releases

 A REXX library is required to execute compiled programs
• Compiled REXX is not an LE language

 Two REXX library choices:
• (Runtime) Library – a priced IBM product
• Alternate library – a free IBM download

• Uses the native system’s REXX interpreter
 At execution, compiled REXX will use whichever library is

available:
• (Runtime) Library
• Alternate Library

IBM z Systems

The REXX Products

5 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 IBM Compiler for REXX on zSeries Release 4
• z/VM, z/OS: product number 5695-013

 IBM Library for REXX on zSeries Release 4
• z/VM, z/OS: product number 5695-014

 z/VSE
• Part of operating system

 IBM Alternate Library for REXX on zSeries Release 4
• Included in z/OS base operating system (V1.9 and later)
• Free download for z/VM (and z/OS)

• http://www.ibm.com/software/awdtools/rexx/rexxzseries/altlibrary.html
 REXX Interpreter

• Included in all z/OS and z/VM releases

http://www.ibm.com/software/awdtools/rexx/rexxzseries/altlibrary.html

IBM z Systems

Why Use a REXX Compiler?

6 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Program performance
• Known value propagation
• Assign constants at compile time
• Common sub-expression elimination
• stem.i processing

 Source code protection
• Source code not in deliverables

 Improved productivity and quality
• Syntax checks all code statements
• Source and cross reference listings

 Compiler control directives
• %include, %page, %copyright, %stub, %sysdate, %systime, %testhalt

IBM z Systems

REXX Compiler Issues / Updates

7 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Interpreter issue:
• If daylight saving time ended while a long-running REXX program was

executing, the REXX elapsed time failed due to a negative interval
• Fixed in Interpreter
• Queued to be fixed in the Compiler

 11 PMRs addressed in Compiler in 2016 (no common pattern)
 1 REXX library APAR (first APAR for several years)

• Occasional program check due to scanning past the end of a page
when checking whether a stem tail was numeric if the length was zero
(which wrapped to 255).

 Reported problem (PMR)
• Time stamp on compiler listing incorrect by 27 seconds

• Does not take leap seconds into account
• Leap second support added to MVS in 1993
• REXX compiler PMR 03766,124,848 noting time stamp fails to

allow for leap seconds
• PTF available, awaiting customer feedback

IBM z Systems

REXX User Example 1

8 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Received email noting:
• Have successfully copied large datasets to 64-bit memory and manipulated them using

STORAGE function.
• Your samples also appear in the REXX Reference manual with several typos, e.g. mixing 24 and

25 bytes when retrieving data.
– One obvious matter - left to the clever programmers - is that a 64-bit memory object must

pre-exist before you can copy data into it.
– User wrote REXX functions to create (IARV64 REQUEST=GETSTOR) and delete (IARV64

REQUEST=DETACH) such memory objects. Commented that REXX should provide such
functions? (Or at least that the documentation should mention that objects must exist
before 64-bit storage can be successfully referenced? - - STORAGE function could do it
behind the covers, but it does not.)

– User assisted client (Lloyds Banking Group) utilizing the above, noting that “64 bit access
by STORAGE solved a huge practical problem” (3 week effort).

REXX Reference manual used was: SA32-0972 TSO/E REXX Reference.

z/OS V2R2 TSO/E REXX Reference (SA32-0972-02)

https://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?SSN=17C1Q0000387868264&FNC=PBL&PBL=SA32-0972-02PBCEEBO200005894&TRL=TXTSRH

IBM z Systems

REXX User Example 2

9 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Received email noting:
• Currently I work an ReXX to update some error messages in a DB2-Table and face the

problem that the value of the error message is set to upper case by calling DSNREXX. (But
in Germany we use mixed case for everything, esp. error messages ;-))

• I double checked the ReXX-Variable for the error message and it contains mixed case before
calling DSNREXX.

• In your presentation you suggested to use “Use upper case for calls to external routines
(commands)” for Capitalization. Is this really a suggestion or does DSNREXX always set
everything to upper case?

• If yes/no - do you have an idea how I can force DSNREXX to avoid translating my error
message to upper case?

• There is no rule on whether or where you use all lower-case, mixed case, or all caps in REXX.
It is strictly a style argument, and the suggestions the presentation makes are included (as a
FYI) accordingly.

• Note that if one prefers to use some other style or standard, they may certainly do so.

REXX External Environments

IBM z Systems

External Environments

11 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 ADDRESS instruction is used to define the external
environment to receive host commands

• For example, to set TSO/E as the environment to receive
commands

ADDRESS TSO

 Several host command environments available in z/OS
 A few host command environments available in z/VM

IBM z Systems

Host Command Environments in z/OS

12 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

• TSO
• Used to run TSO/E commands like ALLOCATE and TRANSMIT
• Only available to REXX running in a TSO/E address space
• The default environment in a TSO/E address space
• Example:

Address TSO “ALLOC FI(INDD) DA(‘USERID.SOURCE’) SHR”

• MVS
• Use to run a subset of TSO/E commands like EXECIO and

MAKEBUF
• The default environment in a non-TSO/E address space
• Example:

Address MVS “EXECIO * DISKR MYINDD (FINIS STEM MYVAR”

IBM z Systems

Host Command Environments in z/OS

13 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

• ISPEXEC
• Used to invoke ISPF services like DISPLAY and SELECT
• Only available to REXX running in ISPF
• Example:

Address ISPEXEC “DISPLAY PANEL(APANEL)”

• ISREDIT
• Used to invoke ISPF edit macro commands like FIND and

DELETE
• Only available to REXX running in an ISPF edit session
• Example:

Address ISREDIT “DELETE .ZFIRST .ZLAST”

• Many more!

IBM z Systems

Host Command Environments in z/OS …

14 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

• CONSOLE
• LINK, LINKMVS, LINKPGM, ATTACH, ATTCHMVS, ATTCHPGM
• SYSCALL
• SDSF
• DSNREXX

IBM z Systems

Host Command Environments in z/OS …

15 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

• CONSOLE
• Used to invoke MVS system and subsystem commands
• Only available to REXX running in a TSO/E address space
• Requires an extended MCS console session
• Requires CONSOLE command authority
• Example:

“CONSOLE ACTIVATE”
Address Console “D A” /* Display system activity */

“CONSOLE DEACTIVATE”

Result:
IEE114I
JOBS

04.50.01
M/S

2011.173
TS USERS

ACTIVITY
SYSAS

602
INITS

ACTIVE/MAX VTAM OAS

00002 00014 00002 00032 00005 00001/00020 00010

IBM z Systems

Host Command Environments in z/OS …

16 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 LINK, LINKMVS, LINKPGM, ATTACH, ATTCHMVS, ATTCHPGM
• Host command environments for linking to and attaching unauthorized programs
• Available to REXX running in any address space
• LINK & ATTACH – can pass one character string to program
• LINKMVS & ATTCHMVS – pass multiple parameters; half-word length field precedes

each parameter value
• LINKPGM & ATTCHPGM – pass multiple parameters; no half-word length field
• Example:

“FREE FI(SYSOUT SORTIN SORTOUT SYSIN)”
“ALLOC
“ALLOC
“ALLOC
“ALLOC

FI(SYSOUT)
FI(SORTIN)
FI(SORTOUT)
FI(SYSIN)

DA(*)”
DA('VANDYKE.SORTIN') REUSE”
DA('VANDYKE.SORTOUT') REUSE”
DA('VANDYKE.SORT.STMTS') SHR REUSE”

sortparm = “EQUALS”
Address LINKMVS “SORT sortparm”

IBM z Systems

Host Command Environments in z/OS …

17 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

• SYSCALL
• Used to invoke interfaces to z/OS UNIX callable services
• The default environment for REXX run from the z/OS UNIX file system
• Use syscalls(‘ON’) function to establish the SYSCALL host environment for

a REXX run from TSO/E or MVS batch
• Example:

Call Syscalls ‘ON’
Address Syscall ‘readdir
Do i=1 to root.0
Say root.i

End

/ root.’

Result:
…
bin
Dev
etc

…

IBM z Systems

Host Command Environments in z/OS …

18 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

• SDSF
• Used to invoke interfaces to SDSF panels and panel actions
• Use isfcalls(‘ON’) function to establish the SDSF host environment
• Use the ISFEXEC host command to access an SDSF panel
• Panel fields returned in stem variables
• Use the ISFACT host command to take an action or modify a job value
• Example:

rc=ISFCalls(“ON”)
Address SDSF “ISFEXEC ST”
Do ix = 1 to JNAME.0
If Pos(“MYREXX”,JNAME.ix) = 1 Then
Do

say “Cancelling job ID” JOBID.ix “for MYREXX”
Address SDSF “ISFACT ST TOKEN(‘”TOKEN.ix”’)

PARM(NP
P)”

End
End
rc=ISFCalls(“OFF”)
Exit

IBM z Systems

Host Command Environments in z/OS …

19 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

• DSNREXX
• Provides access to DB2 application programming interfaces from REXX
• Any SQL command can be executed from REXX

 Only dynamic SQL supported from REXX
• Use RXSUBCOM to make DSNREXX host environment available
• Must CONNECT to required DB2 subsystem
• Can call SQL Stored Procedures

• Example:
RXSUBCOM(‘ADD’,’DSNREXX’,’DSNREXX’)
subSys = ‘DB2PRD’
Address DSNREXX “CONNECT” subsys
owner = ‘PRODTBL’
recordkey = ‘ROW2DEL’
sql_stmt = “DELETE * FROM” owner”.MYTABLE” ,

"WHERE TBLKEY = ‘”recordkey”’”
Address DSNREXX “EXECSQL EXECUTE IMMEDIATE”
sql_stmt Address DSNREXX “DISCONNECT”

IBM z Systems

Other External Environments in z/OS

20 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 IPCS
• Used to invoke IPCS subcommands from REXX
• Only available when run from in an IPCS session

 CPICOMM, LU62, and APPCMVS
• Supports the writing of APPC/MVS transaction programs (TPs) in

REXX
• Programs can communicate using SAA common programming

interface (CPI) communications calls and APPC/MVS calls

IBM z Systems

Other “Environments” and Interfaces in z/OS

21 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 System REXX
• A function package that allows REXX EXECs to be

executed outside of conventional TSO/E and Batch
environments

• Can be invoked using assembler macro interface AXREXX
or through an operator command

• Easy way for Web Based Servers to run
commands/functions and get back pertinent details

• EXEC runs in problem state, key 8, in an APF authorized
address space under the MASTER subsystem

• Two modes of execution
• TSO=NO runs in MVS host environment

address space shared with up to 64 other EXECs
limited data set support
runs isolated in a single address space can
safely allocate data sets
does not support all TSO functionality

• TSO=YES

IBM z Systems

Other “Environments” and Interfaces . . .

22 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 RACF Interfaces
• IRRXUTIL

• REXX interface to R_admin callable service (IRRSEQ00) extract request
• Stores output from extract request in a set of stem variables

myrc=IRRXUTIL(“EXTRACT”,”FACILITY”,”BPX.DAEMON”,”RACF”,””,”FALSE”)
Say “Profile name: “||RACF.profile
Do a=1 to RACF.BASE.ACLCNT.REPEATCOUNT

Say “ “||RACF.BASE.ACLID.a||”:”||RACF.BASE.ACLACS.a
End

• RACVAR function
• Provides information from the ACEE about the running user
• Arguments: USERID, GROUPID, SECLABEL, ACEESTAT

If racvar(‘ACEESTAT’) <> ‘NO ACEE’ Then
Say “You are connected to group “ racvar(‘GROUPID’)”.”

IBM z Systems

Other “Environments” and Interfaces . . .

23 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Other ISPF Interfaces
• Panel REXX

• Allows REXX to be run in a panel procedure
• *REXX statement used to invoke it
• REXX can be coded directly in the procedure or taken

from a SYSEXEC or SYSPROC DD member
• REXX can modify the values of ISPF variables

• File Tailoring Skeleton REXX
• Allows REXX to be run in a skeleton
•)REXX control statement used to invoke it
• REXX can be coded directly in the procedure or taken

from a SYSEXEC or SYSPROC DD member
• REXX can modify the values of ISPF variables

IBM z Systems

Host Command Environments in z/VM

24 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 CMS (default)
• Commands treated as if entered on the CMS command line

• Translation of parameter list
 Uppercasing and tokenizing

• Same search order as CMS command line
 COMMAND

• Basic CMS CMSCALL command resolution
• No translation of parameter list

 No uppercasing of tokenized parameter lists
• To call an EXEC, prefix the command with the word EXEC
• To send a command to CP, use the prefix CP

 CPICOMM, CPIRR, OPENVM
 Generally, best practice is to use “Address Command” at the

top of REXX EXECs that will be run in CMS environment

Key Instructions and Functions

IBM z Systems

Instructions vs. Functions

26 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Keyword instruction
• One or more clauses
• First word is a keyword that identifies the instruction

Arg, Do, If, Parse, …

 Instruction
• Statement that performs an assignment of a value to a variable

counter = 1

 Function
• Must return a single result string (i.e. must be on the right side of

an equal sign)
• Built-in - provided as part of the REXX language
• Internal - create your own
• External – create your own or use platform unique functions

 Subroutine
• Called like a function, but may not return data

IBM z Systems

Key Instructions – Parse
 Parse

• Allows the use of a template to split a source string
into multiple components

• Syntax:

 Short forms to some of these commands exist
• NOT RECOMMENDED
• But you may see them in another user’s code you must maintain

• ARG
 Short form for PARSE UPPER ARG

• PULL
 Short form for PARSE UPPER PULL

27 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

Parse Templates

28 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Simple template
• Divides the source string into blank-delimited words and assigns them

to the variables named in the template
• The last variable gets the rest of the string exactly as entered

datastring = ‘ Write the blank-delimited string ’
Parse Var datastring firstvar secondvar thirdvar fourthvar

firstvar -> ‘Write’
secondvar -> ‘the’
thirdvar -> ‘blank-delimited’
fourthvar -> ‘ string ’

IBM z Systems

Parse Templates

29 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Simple template
• A period is a placeholder in a template

• A “dummy” variable used to collect unwanted data
• Notice the double quotes so the single quote is recognized as part of the string

datastring = “Last one gets what's left”
Parse Var datastring firstvar . secondvar

firstvar -> “Last”
secondvar -> “gets what’s left”

• Often used at the end of Parse statement to take “the rest of the data”

datastring = “Last one gets what's left”
Parse Var datastring firstvar secondvar .

firstvar -> “Last”
secondvar -> “one”

• Causes the last variable to get the last word without leading and trailing blanks

datastring = ‘ Write the blank-delimited string ’
Parse Var datastring firstvar secondvar thirdvar fourhvar

. firstvar -> ‘Write’
secondvar -> ‘the’
thirdvar -> ‘blank-delimited’
fourthvar -> ‘string’

IBM z Systems

Parse Templates . . .
 String pattern template

• A literal or variable string pattern indicating where the
source string should be split

• Assumes blank-delimited if no other pattern specified
datastring = ‘ Write the

Literal:

firstvar (delim) secondvar .

Result (the same in both cases):

firstvar -> ‘ Write the
secondvar -> ‘delimited’

blank’

blank-delimited string ’
Literal

Parse Var datastring

Variable:

delim = ‘-’
Parse Var datastring

firstvar ‘-’ secondvar .

delimited

Blank
delimited

30 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

Parse Templates . . .

31 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Positional pattern template
• Use numeric values to identify the character positions at which to

split data in the source string
• An absolute positional pattern is a number or a number preceded by

an equal sign
----+----1----+----2----+----3----+----4----+

Datastring = ‘Cowlishaw
Parse Var datastring =1

surname -> ‘Cowlishaw

Mike UK ’

surname =20 chrname =35 country =46 .

’chrname -> ‘Mike
country -> ‘UK ’

’

• A relative positional pattern is a number preceded by a plus or minus sign
• Plus or minus indicates movement right or left, respectively, from the last match

----+----1----+----2----+----3----+----4----+
datastring = ‘Cowlishaw
Parse Var datastring =1

surname -> ‘Cowlishaw ’

Mike UK ’
surname +19 chrname +15 country +11 .

chrname -> ‘Mike
country -> ‘UK

’
’

IBM z Systems

Parse Templates . . .
 Positional pattern template – removing blanks

• Specify an absolute positional pattern
• Insert periods to strip blanks

----+----1----+----2----+----3----+----4----+
datastring = ‘Cowlishaw Mike UK ’
Parse Var datastring =1 surname . =20 chrname . =35 country .

surname -> ‘Cowlishaw’
chrname -> ‘Mike’
country -> ‘UK’

If data starts in column 1 and is blank-delimited, this is the same as
Parse Var datastring surname chrname country

• Warning – won’t work if any of the data has more than one “word”
----+----1----+----2----+----3----+----4----+

datastring = ‘Cowlishaw, Jr. Mike UK ’
Parse Var datastring =1 surname . =20 chrname . =35 country .

surname -> ‘Cowlishaw,’
chrname -> ‘Mike’
country -> ‘UK’

Blank
delimited

32 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

Compound Variables and Data Stack

IBM z Systems

What is a Compound Variable?

34 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 A way to reference a collection of related values
• Also called a stem variable or stem array

 Variable name is stem followed by zero or more tails
• stem must be simple variable ending in a period
• tail must be simple variable or decimal integer
• Multiple tails are separated by periods

 Each tail variable is replaced by its value
• Default value of stem and tail is the variable names used for stem and tail
• Each tail references a dimension of the collection

 The resulting derived name is used to access a specific value from the collection
 Tails which are variables are replaced by their respective values

• If no value assigned, takes on the uppercase value of the variable name

day.1 stem:
tail:

DAY.
1

array.j stem:
tail:

ARRAY.
J

name = ‘Smith’
phone = 12345
employee.name.phone stem:

tail:
EMPLOYEE.
Smith.123
45

IBM z Systems

Compound Variable Values
 Initializing a stem to some value automatically initializes every

compound variable with the same stem to the same value
Say month.12
month. = ‘Unknown’
month.3 = ‘March’
month.6 = ‘June’

Say month.12
monthnum = 3
Say month.monthnum

MONTH.12

Unknown

March

 Easy way to reset the values of compound variables
month. = ‘’
Say month.6 ‘’

 Drop instruction can be used to restore compound variables to their uninitialized state
Drop month.
Say month.6 MONTH.6

35 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

Processing Compound Variables

36 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Compound variables provide the ability to process one-dimensional arrays
• Use a numeric value for the tail
• Good practice - store the number of array entries in the compound variable with a tail

of 0 (zero)
• Often processed in a Do loop using the tail as the loop control variable

invitee.0 = 10
Do j = 1 to invitee.0

Say ‘Enter the name for invitee’ j
Parse Pull invitee.j

End
 Stems can be used with I/O functions to read data from and write data to a file on z/VM

or data set on z/OS
• Stream I/O
• EXECIO
• PIPE

 Stems can also be used with the external function OUTTRAP (z/OS) or PIPE (z/VM) to
capture output from commands

IBM z Systems

Processing Compound Variables . . .

37 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 The tail for a compound variable can be used as an index to related data
 The tail (index) and data can contain blanks
 Given the following input data:

----+----1----+----2----+----3----+----4----+

 The unique employee number value can be used as the tail of compound variables that hold the
rest of the person’s data

'PIPE < EMPLOYEE INFO A | STEM rec.'
Do j = 2 To rec.0
Parse Var rec.j =1 empnum name.empnum =25 location.empnum
End j
Say 'Which employee number do you want to learn about?'
Parse Upper Pull empnum
Say 'The name of employee' empnum 'is' Strip(name.empnum)'.'
Say 'The location of employee' empnum 'is' Strip(location.empnum)'.’
Exit

Employee# Name Location
A1234 M Cowlishaw United Kingdom
B5678 T Dean Portland
C9012 V Hein Austin
. . .

IBM z Systems

What is a Data Stack?
 An expandable data structure used to temporarily hold data items

(elements) until needed
 When an element is needed it is always removed from the top of the

stack
 A new element can be added either to the top (LIFO) or the bottom

(FIFO) of the stack
• FIFO stack is often called a queue

LIFO
Stack

38 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

FIFO
Stack
(Queue)

IBM z Systems

Manipulating the Data Stack

39 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 3 basic REXX instructions
• Push - put one element on the top of the stack

elemone = ‘new top element’
Push elemone

• Queue - put one element on the bottom of the stack
elemtwo = ‘new bottom element’
Queue elemtwo

• Parse Pull - remove an element from the (top) of the stack
Parse Pull nextthing

• Result:
nextthing  ‘new top element’

 1 REXX function
• Queued() - returns the number of elements in the stack

num_elems = Queued()

IBM z Systems

Why Use the Data Stack?

40 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 To store a large number of data items for later use
• Size may be unpredictable or unknown

 Pass a large or unknown number of arguments between
EXECs or routines

 Specify commands to be run when the EXEC ends
• Elements left on the data stack when an EXEC ends are treated

as commands
Queue “TSOLIB RESET QUIET”
Queue “ALLOC FI(ISPLLIB) DA(‘ISP.SISPLOAD’
'SYS1.DFQLLIB‘) SHR REUSE”
Queue “TSOLIB ACTIVATE FILE(ISPLLIB) QUIET”
Queue “ISPF”

 Pass responses to an interactive command that runs when
the EXEC ends

• Example: z/VM DDR program

IBM z Systems

Quick Example of Processing the Data Stack

 A receiving (or called) program collects data from the stack
• Passed from sending/calling program

/* Sample stack processing */
Address Command
element.0 = Queued()
Do i = 1 To element.0
Parse Pull element.i
…

End
…

Full parsing capability

41 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

More Stack Functions and Options

42 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Buffers
 Additional stacks
 Some functions are z/OS only

IBM z Systems

Using Buffers in the Data Stack

 An EXEC can create a buffer in a data stack using the Makebuf
command
 All elements added after a Makebuf command are placed in the new

buffer
• Makebuf changes where the Queue instruction inserts new elements

• Remember Queue inserts at the “bottom” of the stack (or buffer)

43 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

Using Buffers in the Data Stack . . .

44 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 An EXEC can use Makebuf to create multiple buffers in the data
stack

• Makebuf returns in the RC variable the number identifying the newly
created buffer

 Dropbuf command is used to remove a buffer from the data stack
• Allows an EXEC to easily remove temporary storage assigned to the data

stack
• A buffer number can be specified with Dropbuf to identify the buffer to

remove
• Default is to remove the most recently created buffer

• Dropbuf 0 results in an empty data stack (use with caution)
 z/OS only

• The Qbuf command is used to find out how many buffers have been
created

• The Qelem command is used to find out the number of elements in the
most recently created buffer

IBM z Systems

Using Buffers in the Data Stack . . .

45 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Important notes
• When an element is removed from an empty buffer, the buffer

disappears with no error or indication
• Keep track of where you are in buffers within the stack
• Used Queued() to keep track of the total number of elements in the

stack
• To remove a buffer

• Issue Dropbuf (the recommended approach)
or

• Remove an element (via Parse Pull) when the buffer is already empty
• The next request to remove an element will move

• To the next buffer if there is one (including buffer 0)
• To the external input queue if the stack (all buffers) are empty

IBM z Systems

Protecting Elements in the Data Stack – z/OS Only

 REXX code can use the stack, but protect itself from inadvertently
removing someone else’s data stack elements

• Create a new private data stack using the NEWSTACK command
 All elements added after a NEWSTACK command are placed in

the new data stack
• Elements on the original data stack cannot be accessed by an EXEC or

any called routines until the new stack is removed (not just emptied)
• When there are no more elements in the new data stack, information is

taken from the terminal (not the original data stack)

46 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

Protecting Elements in the Data Stack - z/OS Only

47 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 DELSTACK - removes a data stack
• Removes the most recently created data stack

• Including all remaining elements in the stack
• Caution

• If no stack previously created with NEWSTACK, then
DELSTACK removes all the elements from the original stack

 QSTACK - returns the number of data stacks
• Including the original stack
• Puts the value in the variable RC

 Note: For z/OS, the QUEUED() function returns the
number of elements in the current data stack.

IBM z Systems

Data Stack vs Buffers

48 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Data Stack
• Advantages

• Protects data in the original stack
 Never defaults back to the “previous” stack in the chain
 Must specifically delete current stack to move to previous

stack
 Can easily request terminal input if also have items in the

stack
 Just create a new stack with nothing on it and issue “Pull”

• Disadvantages
• Only available on z/OS

 z/VM must issue “Parse External” to request terminal input if
data is in the stack

IBM z Systems

Data Stack vs Buffers

49 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Buffers
• Advantages

• Create a stack on top of the existing stack for new list of
items

• Use “QElem” (z/OS only) to keep track of how many items
in this buffer

• Disadvantages
• No guaranteed protection of previous stack in the chain

 If current stack is empty, will proceed to next one
automatically

IBM z Systems

Compound Variables vs Data Stack

50 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Compound Variables
• Advantages

• Basically variables - REXX will manage them like other variables
• Only one step required to assign a value
• Provide opportunities for clever and imaginative processing

• Disadvantages
• Can not be used to pass data between external routines

 Conclusion
• Try to use compound variables whenever appropriate

• They are simpler

IBM z Systems

Compound Variables vs Data Stack

51 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Data Stack
• Advantages

• Can be used to pass data to external routines
• Able to specify commands to be run when the EXEC ends
• Can provide response(s) to an interactive command that runs

when the EXEC ends
• Disadvantages

• Program logic required for stack management
• Processing needs 2 steps

 Take data from input source and store in stack
 Read from stack into variables

• Stack attributes and commands are OS dependent

I/O and Troubleshooting

IBM z Systems

EXECIO Command – z/OS

53 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 A TSO/E REXX command that provides record-based
processing

• Used to read and write records from/to a z/OS sequential data set
or z/OS partitioned data set member

• Requires a DDNAME to be specified
• Use ALLOC command to allocate data set or member to a DD

 Records can be read into or written from compound variables
or the data stack

 Can also be used to:
• Open a data set without reading or writing any records
• Empty a data set
• Copy records from one data set to another
• Add records to the end of a sequential data set
• Update data in a data set, one record at a time

IBM z Systems

EXECIO Command – z/VM

54 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 CMS EXECIO command provides record-based processing
 Recommend using CMS Pipelines (PIPE command) instead

• Simpler to use
‘EXECIO * DISKR EMPLOYEE INFO A (STEM REC. FINIS’
vs
‘PIPE < EMPLOYEE INFO A | STEM rec.’

 PIPEs has much more function

IBM z Systems

Special Variables

55 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 RC variable
• Return code from external commands and

special REXX commands/statements
 RESULT variable

• Value of an expression returned by a subroutine

IBM z Systems

Troubleshooting – Condition Trapping

 Signal On and Call On instructions can be used to trap
exception conditions

 Syntax:

 Condition types:
– ERROR

– FAILURE

– HALT

– NOVALUE

– SYNTAX

– NOTREADY

- error upon return (positive return code)

- failure upon return (negative return code)

- an external attempt was made to interrupt and end execution

- attempt was made to use an uninitialized variable

- language processing error found during execution

- z/VM only. Error during input or output operation

56 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

Troubleshooting – Condition Trapping. . .

57 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Good practice to enable condition handling to process unexpected errors
• Specifically Signal On NoValue

 Use REXX provided functions and variables to identify and report on exceptions
• CONDITION function – returns information on the current condition

• Name and description of the current condition
• Indication of whether the condition was trapped by SIGNAL or CALL
• Status of the current trapped condition

• RC variable
• For ERROR and FAILURE - ontains the command return code
• For SYNTAX - contains the syntax error number

• SIGL variable – line number of the clause that caused the condition

• ERRORTEXT function – returns REXX error message for a SYNTAX condition
Say ErrorText(rc)

• SOURCELINE function – returns a line of source from the REXX EXEC
Say Sourceline(sigl)

IBM z Systems

Troubleshooting – Trace Facility

 Provides powerful debugging capabilities
• Displays the results of expression evaluations
• Displays the variable values
• Follows the execution path
• Interactively pauses execution and runs REXX statements

 Activated using the Trace instruction and function
 Syntax:

58 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

Troubleshooting – Trace Facility . . .

 Code example:

Trace R
If (A > B) | (C < 2 * D) Then
Say 'At least one expression was true.'

Else
Say 'Neither expression was true.'

 Result:

7 *-* If (A > B) | (C < 2 * D)

>>> "1"
- Then

8 *-* Say 'At least one expression was true.'
>>> "At least one expression was true."

At least one expression was true.

59 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

A = 1
B = 2
C = 3
D = 4

Trace Results

IBM z Systems

Troubleshooting – Trace Facility . . .
 Code example:

A = 1
B = 2
C = 3
D = 4
Trace I
If (A
Say

Else
Say

> B) | (C < 2 * D) Then
'At least one expression was true.'

'Neither expression was true.'

 Result:
6 *-* If (A > B) | (C < 2 * D)

>V> "1"
>V> "2"
>O> "0"
>V> "3"
>L> "2"
>V> "4"
>O> "8"
>O> "1"
>O> "1"
- Then

7 *.* Say 'At least one expression was true.‘
>L> “At least one expression was true.”

At least one expression was true.

Trace
Intermediates

60 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

Troubleshooting – Trace Facility . . .

61 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Interactive trace provides additional debugging power
• Pause execution at specified points
• Insert instructions
• Re-execute the previous instruction
• Continue to the next traced instruction
• Change or terminate interactive tracing

 Starting interactive trace
• ? option with the TRACE instruction
• In TSO, use EXECUTIL TS command (Trace Start)

• Code in your REXX EXEC
• Issue from the command line to debug next REXX EXEC run
• Cause an attention interrupt and enter TS

IBM z Systems

Programming Style and Techniques

62 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Be consistent with your style
• Helps others read and maintain your code
• Having style rules will make the job of coding easier

 Indentation
• Improves readability
• Helps identify unbalanced or incomplete structures

• Do - End pairs
 Comments

• Provide them!
• Choices:

• In blocks
• To the right of the code

IBM z Systems

Programming Style and Techniques . . .

63 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Capitalization
• Can improve readability
• Suggestions

• Use all lowercase for variables
• Use mixed case (capitalize the first letter) for keywords,

labels, calls to internal subroutines
• Use upper case for calls to external routines (commands)

 Variable names
• Try to use meaningful names

• Helps understanding and readability
• Avoid 1 character names

• Easy to type but difficult to manage and understand
• Exception – indices to compound variables

• Avoid ending names with letter O or lowercase L
• Hard to distinguish between numbers 0 and 1

IBM z Systems

Programming Style and Techniques . . .

 Subroutines
• Subroutines are useful to break code into 'functional units' of not more than one page.

• Eases learning and debugging since the programmer can concentrate on a close-knit piece
of code that only does one thing; No observable performance impact

 Comparisons
• REXX supports exact (e.g. “==“) and inexact (e.g. “=“) operators

• Only use exact operators when appropriate
if action == "SAVE" then …

• Above comparison will fail if variable action is "SAVE "
• Avoid using non-standard NOT characters: “¬” and “/”

• Portability problem when transferring code to an ASCII platform
• Use “\=“, or less commonly used “\>“ “\<=

Extra blank

64 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

Programming Style and Techniques . . .

65 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Semicolons
• Can be used to combine multiple statements in one line

• DON’T – detracts from readability
• Languages like C and PL/I require a “;” to terminate a line

• Can also be done in REXX
• DON’T – doubles internal logic statement count for interpreted REXX

 Conditions
• For complex statements, REXX evaluates all Boolean expressions, even if

first fails:
If 1 = 2 & 3 = 4 & 5 = 5 Then Say 'Impossible‘

• Divide-by-zero can still occur if a=0
If a \== 0 & b/a > 1 Then ...

• Can be avoided by nesting IF statements:
If a \== 0 Then
If b/a > 1 Then ...

IBM z Systems

Programming Style and Techniques . . .

66 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Literals
• Important to use literals where appropriate

• For example: external commands
• Lazy programming can lead to unfortunate results

• For uninitialized variables: value=name
control errors cancel

• This usually works
 Breaks if any of the 3 words is a variable with value already assigned

• Also a performance cost for unnecessary variable lookups (20%+
more CPU)

• Instead enclose literals in quotation marks
‘CONTROL ERRORS CANCEL’

IBM z Systems

Programming Style and Techniques . . .

67 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 External commands
• Best practices

• Enclose in quotation marks
• Use uppercase
• Fully spell out the command

 Don’t assume any abbreviations that may not be
present if the EXEC is moved to another system

 Preface with the external environment as needed

REXX Enhancements in z/OS V2.1

IBM z Systems

REXX Enhancements in z/OS V2.1 and later

66 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 EXECIO enhanced to support I/O with RECFM=U, VS, VBS
 RECFM=U,VS,VBS support also added to callable I/O interface
 New TRAPMSG function allows IRX... messages, if issued from a command invoked

by the EXEC, to be captured via OUTTRAP
 STORAGE function now supports 64-bit addresses for both reading from and writing to

storage.
 Empty sequential data set can be part of a concatenation accessed by EXECIO,CLIST

I/O, PRINTDS if it is SMS managed
 LISTDSI enhanced (REXX and CLIST)
 RACF/NORACF operand
 Multi Volume Support
 Handles data sets with extended attributes
 APAR OA48348 - MVSVAR function allows symbol names up to 16 chars
 Other smaller requirements

 z/OS v2.2 enhancement allows for “long symbols” to be used
• APAR release to permit use of long system symbol names in REXX and CLIST

 Z/OS v2.3 comment:
• While significant zOS work for supporting 8-character USERID, not a specific REXX item

Long symbols example

| Assume the following symbols have been defined with SYMDEF
| statements in the active IEASYMxx member of 'SYS1.PARMLIB'.
| LONG_SYMBOL_NAME having value: "SY1T_ON_PLEX_A44T"
| EXTSYM_ having value:
| "<==THIS VALUE CAN BE UP TO 44 CHARS LONG===>"
|
| That is, IEASYMxx contains the definitions:
|SYMDEF(&LONG_SYMBOL_NAME='SY1T_ON_PLEX_A44T')
|SYMDEF(&EXTSYM_='<==THIS VALUE CAN BE UP TO 44 CHARS LONG===>')
|
| Then the MVSVAR function can be used to retrieve the values
| of these symbols as shown:
| z1 = MVSVAR('SYMDEF','LONG_SYMBOL_NAME')
| z2 = MVSVAR('SYMDEF','EXTSYM_')
| say z1
| <- Returns z1: SY1T_ON_PLEX_A44T
| say z2
| <- Returns z2: <==THIS VALUE CAN BE UP TO 44 CHARS LONG===>

70

Overview - EXECIO

 Over the years many customers have asked for the capability
to handle I/O to data sets containing records with Variable
Spanned (VS, VBS) RECFM, and with data sets having
undefined (U) RECFM. This includes the ability to handle
spanned files generated by SMF, or to read load library type
undefined files.

 Problem Statement / Need Addressed
– Provide the capability to read or write RECFM=VS, VBS, U type

data sets under REXX.
Note: RECFM=VS/VBS files do not support update mode (DISKRU).

 Solution
– EXECIO support extended

 Benefit / Value
– The power of REXX and EXECIO can be used to process data sets

with RECFM attributes that were formerly not supported.

71

Usage & Invocation

 Example 1 continued

ELSE
do

say 'File allocation error ...'
error = 1 /* Error occurred */

end
IF error = 0 then /* If no d is ok */

DO
"execio "inrec.0" DISKW OUTVBS (STEM inrec. FINIS" /* Write all

records read to the new file */
if rc=0 then

do
say 'Output to new VBS file completed successfully'
say 'Number of records copied ===> ' inrec.0

end
else

do
say 'Error writing to new VBS file '
error = 1 /* Error occurred */

end
END

72

Usage & Invocation
 Example 2. Use EXECIO to read a member of a RECFM=U file and change the

first occurrence of the word 'TSOREXX ' within each record to 'TSOEREXX'
before rewriting the record. If a record is not changed, it need not be rewritten.
/* REXX */
/* Alloc my Load Lib data set having RECFM=U BLKSIZE=32000 LRECL=0 */
"ALLOC FI(INOUTDD) DA('apar2.my.load(mymem)') SHR REUSE"
readcnt = 0 /* Initialize rec read cntr */
updtcnt = 0 /* Initialize rec update cntr */
error = 0 /* Initialize flag */
EoF = 0 /* Initialize flag */
do while (EoF=0 & error=0) /* Loop while more recs/no err */

"execio 1 DISKRU INOUTDD (STEM inrec." /* Read a rec for update */
if rc = 0 then /* If read ok */

do /* Replace 1st occurrence of 'TSOREXX' in record by 'TSOEREXX'
and write it back */

readcnt = readcnt + 1 /* Records read */
z = POS('TSOREXX ',inrec.1,1) /* Find target within rec */
if z /= 0 then /* If found, replace it */

do
inrec.1 = SUBSTR(inrec.1,1,z-1)||'TSOEREXX'|| ,

SUBSTR(inrec.1,z+LENGTH('TSOEREXX')) /*Replace it*/
"execio 1 DISKW INOUTDD (STEM inrec." /* Rewrite the update

made to the last record read*/

73

Usage & Invocation
 Example 2 continued

if rc > 0 then /* If error */
error=1 /* Indicate error */

else
updtcnt = updtcnt + 1 /* Incr update count */

end
else /* Else nothing changed, nothing

to rewrite */
NOP /* Continue with next record */

end
else /* Else non-0 RC */

if rc=2 then /* if end-of-file */
EoF=1 /* Indicate end-of-file */

else
error=1 /* Else read error */

end /* End do while */
"execio 0 DISKW INOUTDD (FINIS" /* Close the file */
if error = 1 then

say '*** Error occurred while updating file '
else

say updtcnt' of 'readcnt' records were changed'
"FREE FI(INOUTDD)"
exit 0

74

Overview – TRAPMSG function

 TRAPMSG – a new TSO/E REXX function used in conjunction with OUTTRAP
to permit REXX to trap REXX messages (i.e. IRX..... msgs) in some instances.
Prior to this, no IRX.... msg could be trapped.

 Problem Statement / Need Addressed
– REXX IRX..... messages should be trappable via OUTTRAP just as other output

(e.g. such as say output from nested execs) is trappable.

 Solution
– Use TRAPMSG('on') to tell REXX to treat REXX msg output in the same was as

any other output, for purposes of trapping.

 Benefit / Value
– REXX msgs issued by nested execs, and by host commands invoked by REXX

(e.g. execio) can now be trapped into an OUTTRAP variable, rather than
always being written to screen.

– CLIST error msgs from CLISTs invoked by REXX also now trappable.

75

Usage & Invocation

 TRAPMSG() - returns current setting. /* OFF perhaps */

 TRAPMSG('ON' | 'OFF') - enables or disables output trapping for IRX....
msgs. Default is 'OFF'

76

Usage & Invocation
 Example 1: A REXX exec invokes execio without allocating the indd file.

EXECIO will return RC=20 and an error message. By trapping the
message with OUTTRAP, the exec can decide what to do with the error.
(This same technique can be used to trap the IRX0250E message
if execio were to take an abend, like a space B37 abend.)

===
msgtrapstat = TRAPMSG('ON') /* Save current status and set

TRAPMSG ON to allow REXX msgs to be trapped */
outtrap_stat = OUTTRAP('line.') /* Enable outtrap */
/**/
/* Invoke TSO host cmd, execio, and trap any error msgs issued */
/**/
"execio 1 diskr indd (stem rec. finis"

if RC = 20 then /* If execio error occurred */
do i=1 to line.0
say '==> ' line.i /* Write any error msgs */

end
outtrap_stat = OUTTRAP('OFF') /* Disable outtrap */
msgtrapstat = TRAPMSG('OFF') /* Turn it off */
exit 0

77

Usage & Invocation
 Example 2: A REXX exec turns on OUTTRAP and TRAPMSG and invokes a second

REXX exec. The second REXX exec gets an IRX0040I message due to an invalid
function call. Exec1 is able to trap the message issued from exec2.

Note that if exec1 had made the bad function call, it could not trap the error message because a
function message is considered at the same level as the exec. This is similar to the fact that an
exec can use OUTTRAP to trap SAY statements from an exec that it invokes, but it cannot trap its
own SAY output.
===

/* REXX - exec1 */
trapit = OUTTRAP('line.')
trapmsg_stat = TRAPMSG('ON')
call exec2
do i=1 to line.0 /* Display any output trapped from exec2 */

say '==> ' line.
end
trapit = OUTTRAP('OFF')
trapmsg_stat = TRAPMSG('OFF')
exit 0

/* REXX - exec2 */
say 'In exec2 ...'
time = TIME('P') /* Invalid time operand, get msg IRX0040I*/
return time

78

Overview – STORAGE function
 z/OS can use address 64-bit storage, providing vastly expanded addressable

areas. REXX cannot read or write to these areas.

 Problem Statement / Need Addressed
– REXX STORAGE needs ability to view or change storage within 64-bit

addressable areas above the BAR.

 Solution
– STORAGE extended to handle 64-bit addresses, in addition traditional 24-

bit and 31-bit addresses.

 Benefit / Value
– Clever programmers can make use of 64-bit storage to greatly expand the

amount of data than can be maintained, in storage, by REXX.

79

Usage & Invocation

 STORAGE function now supports 64-bit address represented by 9-17
hexidecimal chars, consisting of 8-16 hex chars and an optional underscore
(“_”) separating high and low order half

 Retrieve 25-bytes from addr 000AAE35:
storet = STORAGE(000AAE35,25)

 Replace data at 0035D41F with 'TSO/E REXX'
storet = STORAGE(0035D41F,,'TSO/E REXX')

 The following illustrate valid 64-bit addresses that can be used with storage
storet = STORAGE(00000001EF_80000010,60) – read 60-bytes from
64-bit address 1EF_80000010

80

Usage & Invocation

The following illustrates some valid and invalid 64-bit addresses:

Hex Address passed Binary Address
to STORAGE used by STORAGE Comment
================ ================== ===================

_00000010 '0000000000000010'x - Valid 64-bit addr.
(Padded to left with
0's to 64-bits.)
Addresses same area as
31-bit '00000010'x addr.

0_00000010 '0000000000000010'x - Valid 64-bit addr.
Addresses same area
as _00000010.

0_80000010 '0000000080000010'x - Valid 64-bit addr.
Addr is 2GB beyond
the 0_00000010 addr.

000001EF10 '000000000001EF10'x - Valid 64-bit addr.
1EF_80000010 '000001EF80000010'x - Valid 64-bit addr.
1EF80000010 '000001EF80000010'x - Valid 64-bit addr

without "_" separator.
000001EF_80000010 '000001EF80000000'x - Valid 64-bit addr.
000001EF_10 Invalid Addr - Right half of 64-bit

addr <8 chars.

81

Usage & Invocation
Hex Address passed Binary Address
to STORAGE used by STORAGE Comment
================ ================== ===================

00000001EF_000010 Invalid Addr - Left half of addr >8
chars, right half <8
chars.

0000001EF_80000010 Invalid Addr - More than 16 hex chars
Also, left half more
than 8 chars.

00001EF8000001000 Invalid Addr - More than 16 hex chars

As an example of what you might expect, consider STORAGE used to
retrieve 25 bytes from a 64-bit addressable area:
say '<'C2X(STORAGE(1EF_80000010,25))'>'

/* Returns ...
<IARST64 COMM SIZE 000512 > perhaps */

82

Overview – LISTDSI enhanced
 Keep LISTDSI REXX function/ CLIST statement current with new features added

to z/OS, and improve current capabilities.

 Problem Statement / Need Addressed
– As new features are introduces to data sets, LISTDSI should be improved to

report on those. Also LISTDSI should be able to handle multi-volume data sets.

 Solution
– New variables have been added to LISTDSI.
– LISTDSI now provides information on all volumes of a multi-volume data set,

not just the first.
– RACF/NORACF operand added.

 Benefit / Value
– New capabilities help keep LISTDSI current.

83

Usage & Invocation

 LISTDSI 'dsname'... RACF/NORACF MULTIVOL/NOMULTIVOL
– Specifying NORACF means LISTDSI will not determine the RACF

status. This implies that LISTDSI will not attempt to open the data set
to gather additional information, even if open is necessary based on
another keyword. For example, for a PDS, if DIRECTORY is specified,
LISTDSI would open the data set to get directory info, but will not if
NORACF is specified.

– Specify NORACF if you do not want LISTDSI to query RACF as to
whether a data set is protected. (Default is RACF.)

– Specify MULTIVOL if you want information on the totality of all
volumes of a multi-volume data set. NOMULTIVOL provides
information on just the first volume (as prior to this support).

84

Usage & Invocation

 New LISTDSI variables set
– SYSNUMVOLS - Number of volumes used, always returned

• SYSVOLUMES - Volume names separated by blanks, up to
number in SYSNUMVOLS. Returns 7-char per volume (6-char
volume name plus 1 blank separator). Up to 412 chars (59
vols) .

• SYSVOLUME – existing variable, returns name of first volume

– SYSUSEDPERCENT - Percent pages used for PDSEs. Always
returned for PDSEs along with previously existing SYSUSEDPAGES.
One or all vols.

85

Usage & Invocation
 For EAV volumes:

– SYSCREATEJOB - Jobname that created data set, if available
e.g. PAYROLL

– SYSCREATESTEP- Stepname that created data set, if available
e.g. IKJEFT01

– SYSCREATETIME- Time that data set was created, if available in
format hh:mm:ss. (e.g. 02:35:15)

– SYSCREATE - Previously existing var, returns Create Date
(e.g. 2012/193)

 Existing variables with modified meaning
– SYSALLOC - one or all vols. Space allocated.
– SYSUSED – one or all vols. Space used.
– SYSEXTENTS – one or all vols. Number of extents.
– SYSRACFA - blank if NORACF. 'NONE'/'GENERIC'/'DISCRETE' if RACF

was specified or defaulted.

86

Enhancement Summary

New features of REXX now include
– Long symbols support
– Enhancements to EXECIO to support I/O to RECFM=VS,VBS,

U data sets.
– New TRAPMSG function.
– Enhancements to REXX STORAGE function to support 64-bit

addresses.
– Null SMS managed data sets allowed in a sequential

concatenation for EXECIO, CLIST I/O, PRINTDS.
– Enhancements to LISTDSI

87

More Details

 SA22-7790-11, z/OS TSO/E REXX Reference
 SA22-7781-08, z/OS TSO/E CLISTs
 SA22-7786-12, z/OS TSO/E Messages

88

Related Programs

IBM z Systems

CMS and TSO Pipelines

90 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 A powerful method of processing or manipulating data
 Can be called within REXX programs
 A collection of data processing elements connected in a

series
• Output of one element becomes the input to the next element
• For example, on z/VM

’PIPE CP QUERY DASD | STEM dasd.‘
• Issues the CP command QUERY DASD
• Response is written into the pipeline
• Next stage (STEM) receives the input and places it into the stem

variable “dasd”, setting dasd.0 to the number of lines of data
 Included in all current releases of z/VM
 Available as a separate product for TSO

• Batchpipes (5655-D45)

IBM z Systems

Open Object REXX

91 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Open Object REXX is available via open source community
• Runs on Linux on z Systems
• Many other platforms

 www.oorexx.org
• Managed by REXX Language Association

 99% compatible with other System z REXX programs
 Informal testing with SLES on memory and CPU constrained

system
• Compare PERL and OOREXX – OOREXX is much faster!
• Memory footprint of OOREXX is similar to PERL with several

modules loaded

http://www.oorexx.org/

IBM z Systems

(Open Source) NetRexx

92 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 An object oriented Rexx for the Java Virtual Machine (JVM)
• Write in REXX (or REXX-like)
• Compiler converts to Java source statements and

bytecode
 Available via open source community since 2011
 netrexx.org

• Managed by REXX Language Association

IBM z Systems

Additional Information and Contacts

93 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 IBM REXX Website
http://www.ibm.com/software/awdtools/rexx

 IBM Contacts
• Virgil Hein, vhein@us.ibm.com

• Compiler and Library for REXX on zSeries

http://www.ibm.com/software/awdtools/rexx
mailto:vhein@us.ibm.com

IBM z Systems

References

94 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Compiler and Library for REXX User’s Guide and Reference (SH19-8160)
 REXX/VM User’s Guide (SC24-6222)
 REXX/VM Reference (SC24-6221)
 TSO/E REXX Reference (SA32-0972)
 z/OS V2R2 TSO/E REXX Reference (SA32-0972-02) added recently
 z/OS TSO/E CLISTs (SA32-0978)
 z/OS TSO/E Messages (SA32-0970)
 ISPF Services Guide for z/OS (SC19-3626)
 ISPF Dialog Developer’s Guide and Reference for z/OS (SC19-3619)
 ISPF Edit and Edit Macros for z/OS (SC19-3621)
 Using REXX and z/OS UNIX System Services (SA23-2283)
 SDSF Operation and Customization (SA23-2274)
 DB2 for z/OS Application Programming and SQL Guide (SC19-4051)
 z/OS MVS IPCS Commands (SA23-1382)
 z/OS MVS Authorized Assembler Services Guide (SA23-1371)
 Security Server RACF Macros and Interfaces (SA23-2288)

IBM z Systems

(Previous) References

95 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Compiler and Library for REXX User’s Guide and Reference (SH19-8160)
 REXX/VM User’s Guide (SC24-6222)
 REXX/VM Reference (SC24-6221)
 TSO/E REXX Reference (SA22-7790)
 SA22-7781-08, z/OS TSO/E CLISTs
 SA22-7786-12, z/OS TSO/E Messages
 ISPF Services Guide

• z/OS V1, SC19-3626
• z/OS V2, SC34-4819

 ISPF Dialog Developer’s Guide and Reference
• z/OS V1, SC19-3619
• z/OS V2, SC34-4821

 ISPF Edit and Edit Macros
• z/OS V1, SC19-3621
• z/OS V2, SC28-1312

 Using REXX and z/OS UNIX System Services (SA22-7806)
 SDSF Operation and Customization (SA22-7670)
 DB2 Application Programming and SQL Guide (SC19-4051)
 MVS IPCS Commands (SA22-7594)
 MVS Programming Authorized Assembler Services Guide (SA22-7605)
 Security Server RACF Macros and Interfaces (SA22-7682)

IBM z Systems

Thank
EnglishYou

Merci
French

Grazie
Italian

Gracias
Spanish

Obrigado
Brazilian Portuguese

Danke
German

Japanese

Russian

Arabic

Traditional Chinese

Simplified Chinese

Tamil
Thai

Korean
Hindi

96 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

	Slide Number 1
	Disclaimers
	Agenda
	REXX Interpreter and Libraries
	The REXX Products
	Why Use a REXX Compiler?
	REXX Compiler Issues / Updates
	REXX User Example 1
	REXX User Example 2
	Slide Number 10
	External Environments
	Host Command Environments in z/OS
	Host Command Environments in z/OS
	Host Command Environments in z/OS …
	Host Command Environments in z/OS …
	Host Command Environments in z/OS …
	Host Command Environments in z/OS …
	Host Command Environments in z/OS …
	Host Command Environments in z/OS …
	Other External Environments in z/OS
	Other “Environments” and Interfaces in z/OS
	Other “Environments” and Interfaces . . .
	Other “Environments” and Interfaces . . .
	Host Command Environments in z/VM
	Slide Number 25
	Instructions vs. Functions
	Key Instructions – Parse
	Parse Templates
	Parse Templates
	Parse Templates . . .
	Parse Templates . . .
	Parse Templates . . .
	Slide Number 33
	What is a Compound Variable?
	Compound Variable Values
	Processing Compound Variables
	Processing Compound Variables . . .
	What is a Data Stack?
	Manipulating the Data Stack
	Why Use the Data Stack?
	Quick Example of Processing the Data Stack
	More Stack Functions and Options
	Using Buffers in the Data Stack
	Using Buffers in the Data Stack . . .
	Using Buffers in the Data Stack . . .
	Protecting Elements in the Data Stack – z/OS Only
	Slide Number 47
	Data Stack vs Buffers
	Data Stack vs Buffers
	Compound Variables vs Data Stack
	Compound Variables vs Data Stack
	Slide Number 52
	EXECIO Command – z/OS
	EXECIO Command – z/VM
	Special Variables
	Troubleshooting – Condition Trapping
	Troubleshooting – Condition Trapping. . .
	Troubleshooting – Trace Facility
	Troubleshooting – Trace Facility . . .
	Troubleshooting – Trace Facility . . .
	Troubleshooting – Trace Facility . . .
	Programming Style and Techniques
	Programming Style and Techniques . . .
	Programming Style and Techniques . . .
	Programming Style and Techniques . . .
	Programming Style and Techniques . . .
	Programming Style and Techniques . . .
	Slide Number 68
	REXX Enhancements in z/OS V2.1 and later
	Long symbols example
	Overview - EXECIO
	Usage & Invocation
	Usage & Invocation
	Usage & Invocation
	Overview – TRAPMSG function
	Usage & Invocation
	Usage & Invocation
	Usage & Invocation
	Overview – STORAGE function
	Usage & Invocation
	Usage & Invocation
	Usage & Invocation
	Overview – LISTDSI enhanced
	Usage & Invocation
	Usage & Invocation
	 Usage & Invocation
	Enhancement Summary
	More Details
	Slide Number 89
	CMS and TSO Pipelines
	Open Object REXX
	(Open Source) NetRexx
	Additional Information and Contacts
	References
	 (Previous) References
	Slide Number 96

