
Anatomy of a GUI (Graphical User Interface)
Rony G. Flatscher (Rony.Flatscher@wu.ac.at), WU Vienna

"The 2018 International Rexx Symposium", Aruba, Dutch West Indies
March 25th – 29th, 2018

Abstract. Creating for the first time GUI (graphical user interface) applications is an
endeavor that can be most challenging. This article introduces the general concepts of
GUIs and the need to interact with GUI elements only on the so called "GUI thread". The
concepts pertain to GUI applications written for Windows, Linux and MacOS alike.

Using Java libraries for creating Rexx GUI applications makes these Rexx GUI
applications totally platform independent. Taking advantage of BSF4ooRexx even
the powerful JavaFX GUI libraries can be exploited by pure Rexx, allowing Rexx
programmers to create the most demanding and complex GUI applications in an
unparalleled easiness in an astonishing short period of time.

The introduced GUI concepts will be demonstrated with short nutshell examples
exploiting the JavaFX GUI libraries, empowering the Rexx programmers with the ability to
create stable and error free GUI applications in Rexx.

1 Introduction
Rexx has been allowing to interact with the user using the keyword statements SAY
and PARSE PULL (or the uppercase version PULL). The SAY keyword statement sends
the supplied string to the terminal (command line) window using the standard
output stream (stdout represented with the file descriptor number/digit 1) and
appends a line-feed character (abbreviated as LF, usually the value "0a"x). The
keyword statement PARSE PULL value or PULL value will fetch a string value from
the keyboard (actually fetching from the standard input stream, stdin represented
with the file descriptor number/digit 0) after the user presses the carriage return
key. The sequence of output and input statements will follow the flow of control of
the Rexx program. Hence, if a PARSE PULL/PULL keyword statement is in effect, the
execution of the Rexx program is paused until the user presses the return key and
PARSE PULL/PULL returns.

In operating system environments that supply graphical user interfaces (GUI) the
input and output in a GUI will usually not follow the flow of control of the (Rexx)
program. The reason is, that the management of GUIs is usually carried out on
another thread of execution than the program that creates and then interacts with

Anatomy of a GUI (Graphical User Interface) 1/40

the GUI!

For Rexx programmers that are accustomed to the SAY, PARSE PULL and PULL
keyword statements, interacting with a GUI might be quite challenging. For that
reason the BSF4ooRexx [18] package named BSF.CLS – an ooRexx [19] program that
defines public routines and public ooRexx classes and camouflages Java as
ooRexx – defines a public class named BSF.DIALOG that makes it easy to create GUI
dialog boxes for supplying messages (class method messageBox) to the user (like
information or error messages) that wait until the user presses a push button on
the GUI dialog. In addition BSF.DIALOG allows to fetch information from the user
using the class methods dialogBox or inputBox which also will block the execution
of the Rexx program until the user presses a button on the GUI dialog.

This way the BSF.DIALOG class methods behave like Rexx programmers would
expect from their usage of the SAY (messageBox) and PARSE PULL /PULL (dialogBox,

Anatomy of a GUI (Graphical User Interface) 2/40

say "Demonstrating .bsf.dialog~messageBox(...):"
/* args: message, title, messageType */
.bsf.dialog~messageBox("This is an informal message")
.bsf.dialog~messageBox("This is an informal message", "A title text")
.bsf.dialog~messageBox("This is an informal message", "A title text", "info")
.bsf.dialog~messageBox("This is an error message", "A title text", "error")
say "---"

say "Demonstrating .bsf.dialog~dialogBox(...):"
/* args: message, title, messageType, optionType, icon, textOfButtons, defaultButton */
res=.bsf.dialog~dialogBox("Shall we delete?", , "question", "YesNoCancel")
say "dialogBox: you picked button #" res

txtButtons=.list~of("Tickle Alice", "Tickle Berta", "Tickle Cindy")
default="Tickle Berta"
res=.bsf.dialog~dialogBox("Please pick a button", , "question", , , txtButtons, default)
say "dialogBox: you picked button #" res
say "---"

say "Demonstrating .bsf.dialog~inputBox(...):"
/* args: message, title, messageType, icon, textOfOptions, defaultValue */
res=.bsf.dialog~inputBox("Enter something!")
say "inputBox: you entered" pp(res)

txtOpts=.list~of("Tickle Alice", "Tickle Berta", "Tickle Cindy")
def="Tickle Berta"
res=.bsf.dialog~inputBox("Pick something!", "Choice Dialog", "plain", , txtOpts, def)
say "inputBox: you picked" pp(res)

::requires BSF.CLS

Code 1: Adapted from BSF4ooRexx Sample "samples/1-020_demo.BSF.dialog.rxj".

inputBox): all of these GUI dialogs wait until the user presses a button, before the
execution of the Rexx program can proceed. Code 1 above depicts an ooRexx
program from the BSF4ooRexx samples that will present the user four message, two
dialog and two input dialogs, waiting upon the user to press a button on each of
them before proceeding with the execution of the Rexx program.

Thanks to employing Java via BSF4ooRexx under the covers, BSF.DIALOG works on all
Java and ooRexx supported operating systems, among them today's important
operating systems Windows, Linux and MacOS. Code 1 runs unchanged on all of
these via Java which provides the respective GUI systems and insulates the
programmers from them!

However, at the moment when a programmer wishes to take full advantage of GUIs
it becomes important to understand the basic rules that need to be adhered to in
order to become able to create stable, performant GUI applications. The following
sections will introduce Rexx programmers to the fundamentals of GUI program-
ming, explains different possible approaches and demonstrates them in pure Rexx
code, exploiting Java via BSF4ooRexx.1

1 To get quickly acquainted with the multithreading concepts in ooRexx the reader is directed at
Appendix A, "A Glimpse at Multithreading in ooRexx", on page 36, which gives a brief
introduction.
For ooRexx programmers to become able to react upon user interactions on a GUI the ability to
box (embed) a Rexx object into a Java object is important. This boxing becomes possible with the
external Rexx function BsfCreateRexxProxy() of BSF4ooRexx, which gets briefly explained for
the purpose of this article in Appendix B, "BsfCreateRexxProxy(): Creating a Rexx Proxy for Java"
on page 39.

Anatomy of a GUI (Graphical User Interface) 3/40

2 Anatomy of a GUI
GUIs consist of GUI components like containers (e.g. windows) and GUI
components like text fields, buttons and the like which will be usually placed in
containers for the users to interact with. Usually at the latest moment when the
programmer makes a defined GUI visible the GUI management system will create
a separate thread that will exclusively manage access to the GUI components: the
so called "GUI thread", sometimes dubbed "event dispatch thread". The GUI
management of a running GUI thread is usually single-threaded, such that
interactions with the GUI components are only allowed on that GUI thread! If
thereafter a program accesses GUI components from a different thread, e.g., from
its main thread, then the GUI subsystem will get out of sync and may even hang by
not being able to dispatch events anymore, making the GUI become unresponsive
and blocking the entire application! A situation that may cause users to state that
such an application "hangs".

In order for accessing GUI components like windows, text fields and buttons safely,
the access must occur on the "GUI thread". To guarantee that such an access
occurs on the "GUI thread" the components usually have events associated with
them and programmers need to register at component creation time callback
routines or supply objects to get messages sent to whenever the component
determines that that event has occurred. Such events can be pressing of a button,
moving the mouse, the clicking of a key or the mouse, etc.

The GUI management system will run on the GUI thread, manage and observe any
interactions with the GUI components and give control to the affected component
in case of an appropriate interaction. The component will then call back or send
messages to all objects that are registered for callbacks when a specific event
occurs. As this takes place on the GUI thread the called back routines or methods
that run as a result of the messages sent to the observer objects will execute on the
GUI thread as well. This way it becomes safe for the call backed routines/methods
to interact with all GUI components on the GUI thread!

The following subsections will introduce the two independent Java runtime
infrastructures for building GUIs, the "awt/swing GUI" and the "JavaFX GUI"
infrastructures. Both Java GUI infrastructures map their GUI classes and
behaviour to the host GUI system . Therefore all GUI related explanations and GUI
samples in this article can be applied to and run on Windows, Linux and MacOS,

Anatomy of a GUI (Graphical User Interface) 4/40

despite the fact, that those operating systems intentionally employ GUI systems
that are not compatible with each other! So the Java promise, "compile once, run
everywhere" has been carried over to even Java GUI applications and Rexx
programmers can take advantage of this using BSF4ooRexx!

2.1 GUI with Synchronisation Needs: awt/swing
The original Java GUI system got implemented in the Java package "java.awt",
where "awt" is the acronym for "abstract window toolkit" [1]. The Java GUI classes
in this package allow for creating professional GUI applications that run
unchanged on all supported operating systems, notably Windows, Linux and
MacOS. In Java 1.2 another GUI package, javax.swing (a.k.a. "swing"), got added to
the language that eases GUI programming and supplies GUI classes that are
lightweight and more versatile than the awt classes. [5]

The awt and swing GUI management system usually creates the GUI thread ("awt
GUI thread", "event dispatching thread") and takes over management of GUI
components on that thread, whenever the GUI is told to make itself visible to the
user. The execution of the GUI thread is not synchronized with any other thread in
this case and therefore, if the main (Rexx) thread ends its execution the GUI thread
gets torn down as well. The effect is, that the main thread, after creating the GUI
and making it visible, may end and thereby end the GUI. Clearly, the main thread
should only end, after the user has interacted with the GUI, indicating that he/she
wishes to close it or interacts in a way that makes it clear that the GUI and as a
result the main program should close.

This section will create a simple GUI using the java.awt package consisting of a
frame component (a window with a frame) with the title "Hello World!" and a
contained component of type push button entitled with "Press Me !" as depicted
in Figure 1 above. This GUI will be set up in the main Rexx program (main thread)
and made visible. IThe program's execution should then be halted until the user

Anatomy of a GUI (Graphical User Interface) 5/40

Figure 1: A Simple "Hello world!" GUI (MacOS) using the classes from the java.awt
package.

either presses the "Press Me !" push button or closes the window. In order to do so
the main thread must be synchronized with the GUI thread such that the main
thread waits until the user presses the push button or closes the window in the GUI
thread! Code 2 above depicts the Rexx program "helloWorld.rxj" used for
implementing this simple GUI and adorned with leading line numbers in square

Anatomy of a GUI (Graphical User Interface) 6/40

1 #!/usr/bin/env rexx
2

3 -- create instance/value of our Rexx class
4 rexxCloseEH =.RexxCloseAppEventHandler~new -- Rexx event handler
5

6 -- Create Java RexxProxy for the Rexx event handler
7 javaCloseEH=BsfCreateRexxProxy(rexxCloseEH, , - /* Rexx object to box */
8 "java.awt.event.ActionListener", - /* actionPerformed */
9 "java.awt.event.WindowListener") /* windowClosing */
10

11 -- create a Java awt window with a title
12 window=.bsf~new("java.awt.Frame", 'Hello World!')
13 window~addWindowListener(javaCloseEH) -- register event handler
14

15 -- create a Java awt button with text
16 button=.bsf~new("java.awt.Button", 'Press Me !')
17 button~addActionListener(javaCloseEH) -- register event handler
18

19 -- prepare window and show it, using cascading messages (two twiddles '~')
20 window ~~add(button) ~~pack ~~setSize(200,60) ~~setVisible(.true) ~~toFront
21

22 rexxCloseEH~waitForExit -- blocks until user closes the Window (Frame)
23

24 ::REQUIRES BSF.CLS -- get the Java support
25

26 /* -- */
27 -- The Rexx class implements blocking and the methods for the Java callbacks
28 -- "actionPerformed" (ActionListener) and "windowClosing" (WindowListener)
29 ::class RexxCloseAppEventHandler
30

31 ::method init -- Rexx constructor method
32 expose lock
33 lock=.true -- if set to .false, then release block
34

35 ::method waitForExit -- method blocks until attribute is set to .true
36 expose lock
37 guard on when lock=.false -- clever ooRexx way to block! :)
38

39 ::method actionPerformed -- event method (from ActionListener)
40 expose lock
41 lock=.false -- indicate that the app should close
42

43 ::method unknown -- intercept unhandled events, do nothing
44

45 ::method windowClosing -- event method (from WindowListener)
46 expose lock
47 lock=.false -- indicate that the app should close

Code 2: "helloWorld.rxj" a simple java.awt GUI application with line numbers.

brackets (not part of the actual code).

The program2 defines a Rexx class "RexxCloseAppEventHandler" in line # 29 which
defines the following five methods:

1. Method "init" in line # 31: the constructor method, automatically invoked
when creating an instance of the class. It defines an attribute named "lock"
which serves as a control variable for synchronizing the main with the GUI
thread and sets it to .true.

2. Method "waitForExit" in line # 35: this method will block (halt) in line # 37
until the attribute "lock" serving as the control variable gets set to .false.
This will be the case, when the user either presses the button causing
method "actionPerformed" in line # 39 to run or closes the window causing
the method "windowClosing" in line # 45 to run, which both set the attribute
"lock" to .false, causing method "waitForExit" to unblock as a result and
returning to the caller at that point in time.

3. Method "actionPerformed" in line # 39: this method will be invoked on the
GUI thread whenever the user presses the push button, causing the attribute
"lock" to be set to .false, which as a result will unblock the blocked method
"waitForExit" in line # 35.

4. Method "unknown" in line # 43: this method will be invoked by Rexx whenever
a message gets sent to the object for which no method by the same name can
be found by the interpreter. This method is only there to intercept such
unknown messages to avoid the syntax condition "97.1 object does not
understand message ..." that would otherwise be raised by the runtime. This
condition can be raised by the frame component, as it defines seven events,
of which only the "windowClosing" event needs to get processed by the Rexx
program.

5. Method "windowClosing" in line # 45: this method will be invoked on the GUI
thread whenever the user closes the window (frame) , causing the attribute
"lock" to be set to .false, which as a result will unblock the blocked method

2 Please note that starting with ooRexx 5.0 [17] a Rexx program is also dubbed "package", usually a
file that either contains only a plain Rexx program, but may optionally also contain directives for
creating routines, classes, methods and the like. Such definitions will be maintained in a
"package object" (an instance of the ooRexx class named "Package") and can be reflected at
runtime. All Rexx code before the first directive (led in with two consecutive colons "::"), if any,
is called "prolog" or "prolog code" in ooRexx 5.0.

Anatomy of a GUI (Graphical User Interface) 7/40

"waitForExit" in line # 35.

When running the Rexx program Code 2 on page 6 above, the ooRexx interpreter
will syntax check the program and carry out all directives, thereby creating the
class "RexxCloseAppEventHandler" with its five methods. Then the prolog code (see
footnote 2 on page 7 above) gets executed, which does the following in sequence:

• Line # 4: an instance of the class "RexxCloseAppEventHandler" gets created
and assigned to the variable "rexxCloseEH".

• Line # 7: a Java object (a RexxProxy) gets created that boxes the Rexx object
"rexxCloseEH" and which declares to Java, that it implements all Java
methods from the interfaces "java.awt.event.ActionListener" (line # 8) and
"java.awt.event.WindowListener" (line # 9). The resulting Java object will be
stored in the variable "javaCloseEH" and can be used as a Java argument of
either type "java.awt.event.ActionListener" or "java.awt.event.Window-
Listener".
Whenever one of the event methods of these two interface classes gets
invoked on the Java side it will cause an appropriate Rexx message to be sent
to the boxed Rexx object, which then will invoke the Rexx method with the
same name, supplying the Java arguments in the same order plus a trailing
slot argument from BSF4ooRexx.

◦ "java.awt.event.ActionListener" [13]: this Java interface class defines a
single Java method "void actionPerformed(ActionEvent e)". This will be
the event that a push button will use to indicate that it got pushed.

◦ "java.awt.event.WindowListener" [14]: this Java interface class defines the
following seven window event methods of which our application is only
interested in handling the "windowClosing" event:

1. "void windowActivated(WindowEvent e)":

2. "void windowClosed(WindowEvent e)",

3. "void windowClosing(WindowEvent e)",

4. "void windowDeactivated(WindowEvent e)",

5. "void windowDeiconified(WindowEvent e)",

6. "void windowIconified(WindowEvent e)",

7. "void windowOpened(WindowEvent e)".

Anatomy of a GUI (Graphical User Interface) 8/40

• After creating a framed window in line # 12, line # 13 adds our Java proxy
object "javaCloseEH" as a WindowListener allowing each event method to be
invoked, which in turn will cause the appropriate ooRexx message3 to be
sent to the boxed Rexx object "rexxCloseEH" receiving each event as a
message.

• Line # 16: defines a button and # 17 adds our Java proxy object "javaCloseEH"
as an ActionListener to it. As a result, whenever the button gets pushed the

3 The sent ooRexx message will be one of "windowActivated", "windowClosed", "windowClosing",
"windowDeactivated", "windowDeiconified", "windowIconified", "windowOpened", depending on
which Java event method got invoked on the GUI thread. Our Rexx object is only interested in the
message "windowClosing" causing the "windowClosing" method in line # 45 to run, but ignores
the other six produced messages, which get intercepted by the unknown method in line # 43
(which ignores them by not executing any Rexx code).

Anatomy of a GUI (Graphical User Interface) 9/40

Figure 2: Informal UML sequence diagram for "helloWorld.rxj".

invocation of the event method "actionPerformed" will send the message
"actionPerformed" to the embedded Rexx object.

• Line # 20: with the help of cascading Rexx messages (two twiddles "~~") a
sequence of messages is sent ("cascaded") to the window object, causing the
button to be added to the window, setting up the components in the container
(pack), defining the size of the window, making it visible and finally making
sure that the window gets moved to the very front (z-axis) of the screen.

At this point the GUI management system has created and set up the GUI
thread and manages the interactions with the GUI on that thread, without
any synchronization with another thread!

• Line # 22: this message sent to "rexxCloseEH" will cause the main thread to
block, until a callback message from Java occurs that either invokes the
Rexx method "actionPerformed" or the Rexx method "windowClosing" either
of which will clear the "lock" attribute serving as the control variable on the
GUI thread, releasing the block in line # 35, causing a return to the statement
after switching to the main thread in line # 22. The main thread then
concludes the execution of the Rexx program, the Java runtime environment
and all loaded Java resources including the currently displayed Java GUI will
be torn down and the Rexx program ends.

The informal UML4 sequence diagram in Figure 2 on page 9 above is an alternate
way of describing the flow of messages in the "helloWorld.rxj" Rexx program in a
graphical manner, which may be better comprehensible for some. All
messages/invocations (horizontal lines with an arrow at one end to point out the
direction) that are drawn in red get sent on the GUI thread.

2.2 GUI without Synchronisation Needs: JavaFX
JavaFX is a complete, self-contained graphical user interface Java library that can
be instrumented for ooRexx to use it for GUI needs [10].

Basically, JavaFX mandates to create a subclass of the abstract JavaFX class named
"javafx.application.Application" and implement its abstract method "start".
Then, the "launch" method of the Application class needs to be invoked (usually on
the main thread), which then will create the JavaFX GUI thread ("JavaFX
Application Thread") and then dispatches the "start" method on that thread

4 UML is the acronym for "Unified Modeling Language" [7].

Anatomy of a GUI (Graphical User Interface) 10/40

supplying the primary stage object (a JavaFX window) which can be used to
display GUIs dubbed scenes in JavaFX.

The "start" method will create a scene object ("javafx.scene.Scene") from GUI
components (either programmatically or from the definitions of a textual FXML file)
that will be placed on the stage by invoking its method "show". The stage's "show"
method will display the scene object and block further execution until the stage

Anatomy of a GUI (Graphical User Interface) 11/40

Figure 3: A simple JavaFX GUI (MacOS).

1 rxApp=.RexxApplication~new -- create Rexx object that will control the FXML set up
2 jrxApp=BSFCreateRexxProxy(rxApp, ,"javafx.application.Application")
3 jrxApp~launch(jrxApp~getClass, .nil) -- launch the application, invokes "start"
4

5 ::requires "BSF.CLS" -- get Java support
6

7 -- Rexx class implements "javafx.application.Application" abstract method "start"
8 ::class RexxApplication
9

10 ::method start -- Rexx method "start" implements the abstract method
11 use arg primaryStage -- fetch the primary stage (window)
12 primaryStage~setTitle("Hello JavaFX from ooRexx! (Green Version)")
13

14 -- create an URL for the FMXLDocument.fxml file (hence the protocol "file:")
15 fxmlUrl=.bsf~new("java.net.URL", "file:fxml_01.fxml")
16 -- load and create the GUI graph from its definitions:
17 rootNode=bsf.loadClass("javafx.fxml.FXMLLoader")~load(fxmlUrl)
18

19 scene=.bsf~new("javafx.scene.Scene", rootNode) -- create a scene from the DOM
20 primaryStage~setScene(scene) -- set the stage to our scene
21 primaryStage~show -- show the stage (and thereby our scene)

Code 3: "fxml_01.rex" the main Rexx program with line numbers.

(window) gets closed by the user. Therefore, as long as the stage method "show"
does not return to the "start" method the main thread that called "launch" remains
blocked as well. Therefore, with JavaFX, there is no synchronisation needed for the
main thread.

The nutshell example in this subsection with the JavaFX GUI is adapted from the
BSF4ooRexx distributed JavaFX nutshell example in "samples/JavaFX/fxml_01": the
main Rexx program "fxml_01.rex" (Code 3 on page 11) the GUI definition text file
"fxml_01.fxml" (Code 4 on page 13), and the Rexx program
"fxml_01_controller.rex" (Code 5 on page 15) with the controller code, consisting
of the single public routine "buttonClicked", is shown in Figure 3.

The main Rexx program "fxml_01.rex" is shown in Code 3 above. It defines a Rexx
class "RexxApplication" line # 8 which implements the "start" method (starting
with line # 10) of the abstract Java class "javafx.application.Application":

• Line # 1: an instance of the Rexx class "RexxApplication" gets created and
assigned to the Rexx variable "rxApp".

• Line # 2: a Java object (a RexxProxy) gets created that boxes the Rexx object
"rxApp" and which declares to Java, that it implements all the abstract Java
methods in the abstract Java class "javafx.application.Application". The
resulting Java object gets stored in the variable "jrxApp".

• Line # 3: the "launch" method gets invoked, which will create the GUI thread
and invoke the "start" method on it. The invocation of the "start" method
will cause the message "start" to be sent to the boxed Rexx object "rxApp"
which will invoke the Rexx method "start" supplying the Java "stage"
argument.

• Line # 11: the primary stage object gets fetched, it is the JavaFX window
object that will display JavaFX GUIs.

• Line # 12: the title of the primary stage gets set to the text "Hello JavaFX from
ooRexx! (Green Version)" (cf. Figure 3 on page 11 above).

• Line # 15: a Java URL object is created for the FXML file "fxml_01.fxml",
which contains the JavaFX GUI definition.

• Line # 17: the Java class "javafx.fxml.FXMLLoader" gets loaded in order to
become able to access its static method "load", which processes the supplied
FXML file, creates a DOM tree ("graph") of it and returns its root node.

Anatomy of a GUI (Graphical User Interface) 12/40

• Line # 19: a "javafx.scene.Scene" instance gets created from the root node
which represents the JavaFX GUI defined in the FXML file.

• Line # 20: the created scene object is placed on the "primaryStage".

• Line # 21: the primary stage (window) with its scene (GUI) is shown to the
user by handing control over to the JavaFX event dispatcher until the user
ends the application via the GUI (e.g. by closing the primary stage/window).
Once that happens the GUI thread gets shut down and control returns to the
main thread and to the empty line # 4 and the main Rexx program
concludes.

Line # 17 in the main Rexx program processes the FXML file "fxml_01.fxml"
sequentially line by line, creates a tree ("graph") the nodes of which are JavaFX
objects and finally returns the root node of the created DOM (Document Object
Model) tree. Being able to define a graphical user interface declaratively as text
makes the design of even the most complex GUIs a very feasible and time saving
task.5 The definition in the FXML file (Code 4) in detail:

5 The "SceneBuilder" JavaFX tool [3] allows one to create, load and edit JavaFX GUI definitions in
a graphical "what-you-see-is-what-you-get" (WYSIWYG) manner.

Anatomy of a GUI (Graphical User Interface) 13/40

1 <?xml version="1.0" encoding="UTF-8"?>
2

3 <?import javafx.scene.control.Button?>
4 <?import javafx.scene.control.Label?>
5 <?import javafx.scene.layout.AnchorPane?>
6

7 <!-- use the Java scripting engine named 'rexx' in this file -->
8 <?language rexx?>
9

10 <AnchorPane id="AnchorPane" prefHeight="200" prefWidth="400"
11 xmlns:fx="http://javafx.com/fxml/1">
12 <!-- Rexx buttonClicked callback -->
13 <fx:script source="fxml_01_controller.rex" />
14

15 <children>
16 <Button fx:id="idButton1" layoutX="170.0" layoutY="89.0"
17 onAction="slotDir=arg(arg()); call buttonClicked slotDir;"
18 text="Click Me!" textFill="GREEN" />
19

20 <Label fx:id="idLabel1" alignment="CENTER" contentDisplay="CENTER"
21 layoutX="76.0" layoutY="138.0"
22 minHeight="16" minWidth="49"
23 prefHeight="16.0" prefWidth="248.0"
24 textFill="GREEN" />
25 </children>
26 </AnchorPane>

Code 4: "fxml_01.fxml" the FXML text defining the GUI with line numbers.

http://javafx.com/fxml/1

• Line # 1: the XML processing instruction defines the version of the FXML file
and the encoding of the text (Unicode UTF-8).

• Lines # 3, # 4 and # 5: these process instructions fully qualify the JavaFX
classes that need to be imported in order to create instances for the
elements with the "id" attribute "AnchorPane" (line # 10), "idButton1" (line
16) and "idLabel1" (line # 20).

• Line # 8: this process instruction defines that the Java scripting engine
named "rexx" should be employed for any code invocation. As BSF4ooRexx
implements the Java scripting engine (the package "javax.script", cf. [16],
[9]) nothing else needs to be done. Any invocation using the Java script
framework will transparently invoke the RexxScriptEngine to execute the
supplied Rexx code.

• Line # 10: this FXML element defines the GUI container and its dimensions,
assigns it a unique value for the "id" attribute, "AnchorPane".

• Line # 13: this element will cause the Rexx program
"fxml_01_controller.rex" to be run via the Java script framework. The
RexxScript implementation makes sure that all public routines and public
classes get remembered and made available for any further invocations of
Rexx code via the Java script framework. Therefore, the public routine
"buttonClicked" can be directly used in such Rexx code.

• Line # 15: this FXML element defines the contained JavaFX elements.

• Line # 16: this FXML element defines the button with its position within the
container, determines the color green to be used for the text ("Click Me!")
displayed in the push button. It also gets a unique value for the "id" attribute
assigned: "idButton1". In addition it defines in line # 17 the "onAction"
attribute the Rexx code that should be executed whenever the button gets
pushed. Note that invoking this Rexx code is done by JavaFX via the Java
script framework, such that there is no need to explicitly register an event
handler, if the FXML text defines event attributes with the code to execute!

The Rexx code consists of two Rexx statements that are delimited explicitly
with the semi-colon6, the Rexx end of statement indicator:

6 It is possible to insert new-line characters if editing a FXML file with a text editor, such that each
Rexx statement is concluded by it. However, FXML files may be processed and edited with XML-
tools which would possibly remove the new-line characters, thereby joining all Rexx statements

Anatomy of a GUI (Graphical User Interface) 14/40

◦ The first statement ("slotDir=arg(arg());") uses the Rexx built-in
function (BIF) "ARG()"7 to fetch the last supplied argument, which is the
slotDir argument8 [9] appended by BSF4ooRexx.

◦ The second Rexx statement ("call buttonClicked slotDir;") will call the
public routine and supply the slotDir argument for allowing access to the
Java script framework supplied ScriptContext [12] object that holds
references to all of the FXML objects that have an "id" attribute defined
for them in its global scope.

• Line # 20: this FXML element defines the label with size, formatting options
(color, minimum and preferred dimensions, alignments), and a value for the
"id" attribute: "idLabel1". The routine "buttonClicked" is therefore able to
establish direct access to that JavaFX object using the Rexx script annotation
[9] "/*@get(idLabel1)*/" in line # 6 in Code 5 above.

The file "fxml_01_controller.rex" is referred to from "fxml_01.fxml" (line # 13 in

in a single line, which would cause syntax errors. The JavaFX SceneBuilder would be such a tool at
the time of writing.
To prevent syntax errors, it is therefore strongly advised to explicitly end each Rexx statement
with the semi-colon. Also for that reason it is also strongly advised to only use block-comments
("/* … */")and forgo line-comments ("--") in Rexx code in FXML files.

7 The expression "arg(arg())" works like this: the inner invocation of "arg()" without arguments
will return the total number of arguments supplied. In this case the number will be "2" as the
"javafx.event.ActionEvent" object and the BSF4ooRexx slotDir arguments get supplied. This
yields then the expression "arg(2)" in this particular case, which causes the second (the last)
supplied argument to be returned.

8 The BSF4ooRexx supplied slotDir argument will have an entry named "SCRIPTCONTEXT" which
allows a Rexx programmer to refer to the local or global scope bindings [9] present at the time of
the Java script framework invocation. The global scope bindings contain all JavaFX objects from
the FXML file, that have a value for the "id" attribute defined [9]. The RexxScriptEngine
implementation allows Rexx programmers to easily get at and set such supplied JavaFX objects
in the form of "Rexx script annotations" [9].

Anatomy of a GUI (Graphical User Interface) 15/40

1 ::routine buttonClicked public
2 use arg slotDir -- get BSF4ooRexx slotDir argument
3 now=.dateTime~new -- date and time of this invocation
4 say now": arrived in routine 'buttonClicked' ..."
5

6 /* @get(idLabel1) */ -- fetch JavaFX label object from script context
7 say '... current value of label='pp(idLabel1~getText)
8 idLabel1~text="Clicked at:" now -- set text property
9 say '... new value of label='pp(idLabel1~getText)
10 say

Code 5: "fxml_01_controller.rex" the controller Rexx program with line numbers.

Code 4 on page 13 above), which in turn gets used by the main Rexx program
"fxml_01.rex" in its implementation of the application's abstract method "start"
(cf. line # 17 in Code 3 on page 11 above). File "fxml_01_controller.rex" (Code 5
above) is responsible for the output displayed in Figure 3 on page 11 above:

• Line # 1: defines a public routine named "buttonClicked" which will be
invoked each time the button gets clicked in the GUI on the GUI thread.

• Line # 4: outputs the date and time of the routine's invocation.

• Line # 6: a Rexx script annotation [9] is used to fetch the JavaFX label object
named "idLabel1" and making it available under that name as a local Rexx
variable named "IDLABEL1"9.

• Line # 7: the current value of the text attribute of "idLabel1" gets fetched
and displayed.

• Line # 8: the new value for the text attribute of "idLabel1" gets set and

9 The Rexx interpreter will uppercase any Rexx symbol outside of quotes before processing it.
Therefore the JavaFX "id" attribute value "idLabel1" will get uppercased to "IDLABEL1".

Anatomy of a GUI (Graphical User Interface) 16/40

Figure 4: ooRexx JavaFX GUI, informal UML sequence diagram.

thereafter retrieved and displayed in line # 9.

• Line # 10: the output of this invocation of the routine will be concluded with
a blank line.

Please note: as the Rexx code gets executed via the Java script framework, the
RexxScriptEngine [9] of BSF4ooRexx will be employed to invoke Rexx code, which
among other things redirects the standard input, output and error streams to the
ones supplied by the Java script framework. To ease identifying Rexx usage in
those streams, the RexxScriptEngine will prepend any output on any stream with a
prefix like "REXXin>" (using the ooRexx .input monitor), "REXXout>" (using the
ooRexx .output monitor), "REXXerr>" (using the ooRexx .error monitor).

The informal UML sequence diagram in Figure 4 above is an alternate way of
describing the flow of messages in this JavaFX ooRexx application in a graphical
manner, which may be better comprehensible for some. All messages/invocations
(horizontal lines with an arrow at one end to point out the direction) that are drawn
in red get sent on the GUI thread.

Anatomy of a GUI (Graphical User Interface) 17/40

3 Interacting with the JavaFX GUI from a Non-GUI-Thread
So far, the ooRexx applications adhere to the general rule that interaction with GUI
objects are only allowed on the GUI thread, once the GUI management system
created it.

One problem of this single-threaded design of GUIs becomes apparent when
thinking about GUIs that can be used to invoke long running programs. As long as
the execution of long running programs blocks the GUI thread the GUI
management is not able to take control over any user interactions with the GUI
objects. The result is a GUI that appears to be hung to the user, unresponsive and
the like. Because of this important usability problem the implementers of GUI
applications are advised to execute long running programs on a proper, non-GUI
thread.

However, GUIs are especially important for users in such situations where some
programs need to run a long time to get constantly visual feedback that the
program is still active and running, and preferably to also get constant visual
feedback about how far along the progress of the program has come. In many cases
it is very important in such use cases to offer the user via the GUI an option to
interrupt or even stop such long running programs executing on a different
thread!

So the question arises how a program executing on a non-GUI thread could
become able to interact with the GUI objects on the GUI thread.

The Java solution that works on all platforms is quite simple: it supplies a class
with a static method that accepts a java.lang.Runnable object which will get
invoked/run later when the next time the GUI management system executes. That
supplied Runnable object makes it safe to interact with the GUI objects as it gets run
on the GUI thread! This way it becomes possible e.g., to change a progress
indicator GUI object like a progress bar for giving visual feedback to the user.
These are the respective classes with the appropriate method to achieve this
functionality:

• awt/swing GUI management: the class "javax.swing.SwingUtilities" with
the static method "void invokeLater(Runnable doRun)".10

10 This class also supplies the static method "void invokeAndWait(Runnable doRun)", which will
block the caller until the Runnable finished executing on the GUI (awt event dispatching) thread
to ease synchronizing.

Anatomy of a GUI (Graphical User Interface) 18/40

• JavaFX GUI management: the class "javafx.application.Platform" with the
static method "void runLater(Runnable runnable)"

For ooRexx programmers who use BSF4ooRexx it is quite easy and straight
forward to exploit this Java facility by creating an ooRexx class that implements
the "run" method from the java.lang.Runnable interface, create an instance of that
Rexx class, box it with BsfCreateRexxProxy(rexxObject,,"java.lang.Runnable") and
supply the resulting Java object as an argument to the above static methods
"invokeLater", respectively "runLater".

Studying the Rexx GUI applications of some students at WU [8] in the past months
and observing their efforts to apply these principles correctly, it has turned out
that surprisingly they got into (conceptual) problems in complex multithreaded
scenarios to keep their GUIs responsive. Analytically, in the course of developing
and testing their GUI applications they lost the (conceptual) overview of which
Rexx code actually would be executed on which thread. This problem occurred
almost always in the case where they had a need to wait upon such a future Rexx
Runnable to have completed in the JavaFX case, where no "runLaterAndWait" would
be available to them as is the case with the awt/swing SwingUtilities class.

In order to allow the students (and thereby everyone else) to create responsive
JavaFX GUI applications in ooRexx quickly and in a reliable manner, there were
two classes created in the BSF.CLS package that take advantage of the ooRexx
message based architecture that ooRexx programmers are accustomed to:11

11 Cf. [11], section "2.14 Supporting GUI-Thread Interaction from Non-GUI-Thread".

Anatomy of a GUI (Graphical User Interface) 19/40

Figure 5: UML class diagrams for the Rexx classes FxGUIThread and GUIMessage.

• FxGuiThread: with the class methods "runLater" and "runLaterLatest"12 each
of which expect a Rexx receiver (target) object, a Rexx message name and
Rexx arguments, if any. These methods return a GUIMessage object that can
be used to interrogate the GUIMessage object whether it got executed already
on the GUI thread, if – and if so which – result was created, whether an error
has occurred during its execution on the GUI thread, but also allows to wait
(block) until the GUIMessage has completed sometimes in the future to ease
synchronisation, if needed.

• GUIMessage: a class modelled after the ooRexx class Message. Therefore you
can consult the ooRexx reference ("rexxref.pdf") documentation of the
ooRexx Message methods. This class gets employed by the runLater and
runLaterLatest class methods which return an instance of this class.

Figure 5 above shows the components of the two classes. The Rexx programmer
only needs to employ the runLater or runLaterLatest class method in order to have
the Rexx message sent to the target object on the GUI thread the next time the
event dispatcher becomes active. Both methods return a GUIMessage object that can
be inspected to learn about the message's execution status. Both methods have the
same arguments:

• "obj": any Rexx object (does not need to be a GUI object),

• "msg": the name of the Rexx message to be sent on the GUI thread,

• "type": mandatory, if an argument supplied with the message; either the
character "I"(ndividual) or "A"(rray) indicating whether the appended
argument is an individual argument, and if so, multiple arguments need to
be delimited with a comma, or in the case of "A" it must be a single argument
of type Array containing the arguments to be sent with the message.

• "arg...": optional, one or more arguments to be sent with the message. If an
argument is supplied the "type" argument must be given.

12 The runLaterLatest method has the same purpose and signature as runLater, but removes any
runLater message objects from the message queue that have the same Rexx receiver (target)
object and the same Rexx message name. This way the message queue to be processed the next
time the GUI thread becomes available can be kept as small as possible, keeping the needed GUI
thread execution time as low as possible.

Anatomy of a GUI (Graphical User Interface) 20/40

Example Application: a Worker Thread Updating the GUI

The nutshell example13 in this section with the JavaFX GUI is adapted from the
BSF4ooRexx distributed JavaFX nutshell example in "samples/JavaFX/fxml_06" and
consists of the following files:

• "fxml_pb.rxj": main Rexx program, cf. Code 6 on page 23 below.

• "fxml_pb.fxml": the FXML text file that defines the JavaFX GUI, cf. Code 7 On
page 24 below.

• "put_FXID_objects_into_.my.app.rex"14: a utility Rexx program using the
Java script framework during processing of the FXML file "fxml_pb.fxml". It
will be able to determine the name of the FXML file that called it and get all
defined FXML objects that have a value "id" defined for them.

The utility will create a directory named "MY.APP" in the ooRexx global
environment named ".environment" if it does not exist yet. This way the Rexx
application is able to use the environment symbol ".MY.APP" (note the
leading dot) to retrieve that directory with the help of the ooRexx runtime
system from the global Rexx environment.15 It will then create a directory
and store all JavaFX objects with an "id" attribute value in it and save it with
the FXML's file name as the index name in the ".MY.APP" directory.

• "fxml_pb_controller.rex": the Rexx program serving as the controller for the
GUI actions/events, invoked using the Java script framework during
processing of the FXML file "fxml_pb.fxml".

• "worker.rex": the Rexx program that executes on a different operating
system thread and interacts with the JavaFX GUI to update it.

Figure 6 below depicts three different states of the JavaFX GUI (clockwise from top

13 It is assumed that the reader already has read the explanations in section 2.2, "GUI without
Synchronisation Needs: JavaFX" on page 10 above.

14 Many of the JavaFX nutshell examples distributed with BSF4ooRexx take advantage of this utility
as it makes it considerably easy to interact with the JavaFX objects from ooRexx! The reader is
encouraged to take advantage of this utility as well.

15 The ooRexx runtime system resolves environment symbols (symbols with a leading dot) as
follows: it will uppercase the symbol, then temporaily remove the leading dot and look up a
sequence of environment directories for an entry by that name. If found the stored value gets
returned, otherwise the uppercased environment symbol.
The sequence of looking up the environment directories will always be the same, namely: the
package's environment, the local environment (environment symbol ".local") and the global
environment (environment symbol ".environment").

Anatomy of a GUI (Graphical User Interface) 21/40

left): the initial state, the state after interrupting it when the worker thread arrived
at 64 % and the final state after the worker thread concluded its simulated long
work at 100 %.

The Main Rexx Program "fxml_pb.rxj"

The main Rexx program "fxml_pb.rxj" is shown in Code 6 below. It defines a Rexx
class "RexxApplication" in line # 9 which implements the "start" method of the
abstract Java class "javafx.application.Application":

• Line # 1: an instance of the Rexx class "RexxApplication" gets created and
assigned to the Rexx variable "rxApp".

• Line # 2: a Java object (a RexxProxy) gets created that boxes the Rexx object
"rxApp" and declares to Java, that it implements all the abstract Java
methods in the abstract Java class "javafx.application.Application". The
resulting Java object gets stored in the variable "jrxApp".

• Line # 3: the "launch" method gets invoked, which will create the GUI thread
and invoke the "start" method on it. The invocation of the "start" method
will cause the message "start" to be sent to the boxed Rexx object "rxApp"

Anatomy of a GUI (Graphical User Interface) 22/40

Figure 6: Three different states of the JavaFX GUI.

which will invoke the Rexx method "start" supplying the Java "stage"
argument.

• Line # 6: the package "worker.rex" gets required which makes its public
class WORKER available.

• Line # 16: a WORKER object gets created and saved in the directory .MY.APP16

with the index name "worker".

• Line # 21: the stage (window) with its scene (GUI) is shown to the user by
handing control over to the JavaFX event dispatcher until the user ends the
application via the GUI (e.g. by closing the primary stage/window). Once that
happens the GUI thread gets shut down and the control returns to the main
thread and to the empty line # 4 and the main Rexx program concludes.

Defining the JavaFX GUI with the FXML File "fxml_pb.fxml"

Line # 14 in the main Rexx program above processes the FXML file "fxml_pb.fxml"
(Code 7) below:

• Line # 3, # 4, # 5 and # 6: these process instructions fully qualify the JavaFX
classes that get used in the GUI definitions.

16 The .MY.APP directory gets created during the processing of the FXML file "fxml_pb.fxml".

Anatomy of a GUI (Graphical User Interface) 23/40

1 rxApp=.rexxApplication~new
2 jrxApp=BsfCreateRexxProxy(rxApp,,"javafx.application.Application")
3 jrxApp~launch(jrxApp~getClass, .nil) -- launch the application
4

5 ::requires "BSF.CLS" -- get Java support
6 ::requires "worker.rex" -- get access to the public worker class
7

8 /* implements the abstract method "start" of javafx.application.Application */
9 ::class RexxApplication
10 ::method start -- Rexx implementation of the abstract Java method start
11 use arg stage -- we get the stage (window) for displaying our GUI
12

13 fxmlUrl=.bsf~new("java.net.URL", "file:fxml_pb.fxml")
14 rootNode=bsf.loadClass("javafx.fxml.FXMLLoader")~load(fxmlUrl)
15 -- .MY.APP directory now available, create and save a worker object with it:
16 .my.app~worker=.worker~new -- create and save a worker object in .MY.APP
17

18 scene=.bsf~new("javafx.scene.Scene", rootNode) -- create a scene from the tree
19 stage~setScene(scene) -- place our scene on stage
20 stage~title="ProgressBar Demo" -- set the title for the stage
21 stage~resizable=.false -- make sure we cannot resize
22 stage~show -- show the stage with the scene

Code 6: "fxml_pb.rxj" the main Rexx program with line numbers.

• Line # 8: this process instruction defines that the Java scripting engine
named "rexx" should be employed for any code invocation

• Line # 14 defines the start push button with the "id" attribute set to
"idButtonStart" and its "onAction" attribute defines the Rexx code to be run
later, when the GUI is displayed to the user: "call onActionButtonStart
arg(arg())", supplying the last received argument, which is BSF4ooRexx'
appended slotDir argument. The public Rexx routine "onActionButtonStart"

Anatomy of a GUI (Graphical User Interface) 24/40

1 <?xml version="1.0" encoding="UTF-8"?>
2
3 <?import javafx.scene.control.Button?>
4 <?import javafx.scene.control.Label?>
5 <?import javafx.scene.control.ProgressBar?>
6 <?import javafx.scene.layout.AnchorPane?>
7
8 <?language rexx?>
9
10 <AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity"
11 minWidth="-Infinity" prefHeight="219.0" prefWidth="353.0"
12 xmlns="http://javafx.com/javafx/8.0.65" xmlns:fx="http://javafx.com/fxml/1">
13 <children>
14 <Button fx:id="idButtonStart" defaultButton="true" layoutX="62.0" layoutY="41.0"
15 mnemonicParsing="false" prefHeight="22.0" prefWidth="83.0"
16 onAction="call onActionButtonStart arg(arg())" text="Start" />
17
18 <Button fx:id="idButtonExit" cancelButton="true" layoutX="210.0" layoutY="41.0"
19 mnemonicParsing="false" prefHeight="22.0" prefWidth="83.0"
20 onAction="call onActionButtonExit arg(arg())" text="Exit" />
21
22 <ProgressBar fx:id="idProgressBar" layoutX="23.0" layoutY="80.0" prefHeight="17.0"
23 prefWidth="311.0" progress="0.0" />
24
25 <Label fx:id="idLabelCurrent" contentDisplay="CENTER" layoutX="22.0"
26 layoutY="110.0" prefHeight="14.0" prefWidth="311.0"
27 style="-fx-alignment: center;" text="lblCurrent" />
28
29 <Label fx:id="idLabelStart" contentDisplay="CENTER" layoutX="21.0" layoutY="134.0"
30 prefHeight="14.0" prefWidth="311.0" style="-fx-alignment: center;"
31 text="lblStart" />
32
33 <Label fx:id="idLabelEnd" layoutX="21.0" layoutY="148.0" prefHeight="14.0"
34 prefWidth="311.0" style="-fx-alignment: center;" text="lblEnd" />
35
36 <Label fx:id="idLabelDuration" layoutX="23.0" layoutY="170.0" prefHeight="14.0"
37 prefWidth="311.0" style="-fx-alignment: center;" text="lblDuration" />
38 </children>
39
40 <!-- save all fx:id objects in ".environment~my.app~fxml_pb.fxml" -->
41 <fx:script source="put_FXID_objects_into.my.app.rex" />
42
43 <!-- run controller (initializes GUI, defines public routines and class) -->
44 <fx:script source="fxml_pb_controller.rex" />
45 </AnchorPane>

Code 7: "fxml_pb.fxml" the FXML text defining the GUI with line numbers..

http://javafx.com/fxml/1
http://javafx.com/javafx/8.0.65

is defined in the Rexx program "fxml_pb_controller.rex", which will get
processed during FXML loading in line # 44.

The text of the push button is set to "Start" initially, while changed to "Stop"
while the worker object updates the progress bar from another thread to
allow the user to interrupt the worker at any time. If interrupted, the push
button will get the text "Stopping..." and finally, when idle again, the button
will read "Start" again.

• Line # 18 defines the exit push button with the "id" attribute set to
"idButtonExit" and its "onAction" attribute defines the Rexx code to be run
later, when the GUI is displayed to the user: "call onActionButtonExit
arg(arg())", supplying the last received argument, which is BSF4ooRexx'
appended slotDir argument. The public Rexx routine "onActionButtonExit"
is defined in the Rexx program "fxml_pb_controller.rex", which will get
processed during FXML loading in line # 44.

This button will be disabled, after the "Start" button got pushed and re-
enabled after the worker thread stopped (either interrupted by the user or
because it finished its work).

• All JavaFX components that the application needs to interact with have "id"
attribute values set: "idProgressBar" (line # 22), "idLabelCurrent" (line # 25),
"idLabelStart" (line # 29), "idLabelEnd" (line # 33) and "idLabelDuration" (line
36).

• Line # 41: this element will cause the FXML loader to run the denoted Rexx
program "fxml_pb_controller.rex" via the Java script framework. The
RexxScriptEngine implementation makes sure that all public routines and
public classes get remembered and are made available for any further
invocations of Rexx code via the Java script framework. Therefore, the
public routines "onActionButtonStart" and "onActionButtonExit" as well as
the public class "Action" can be directly accessed from Rexx programs that
get executed later.

• Line # 44: this element will cause the FXML loader to run the denoted Rexx
program "put_FXID_objects_into.my.app.rex" via the Java script framework.
This utility program will analyze the ScriptContext for JavaFX objects in its
global scope and save them with their "id" attribute values in a Rexx
directory.

Anatomy of a GUI (Graphical User Interface) 25/40

This directory will then be saved in the .MY.APP directory using the FXML
file's name "fxml_pb.fxml" as the index name. Should the directory named
"MY.APP" not be present in the global .environment yet, then the utility will
create it. This way any Rexx program from this application can access all
JavaFX objects created for "fxml_pb.fxml" by sending the message
"fxml_pb.fxml" to the ".my.app" directory like: "dir=.my.app~fxml_pb.fxml".

The Rexx JavaFX Utility Program "put_FXID_objects_into_.my.app.rex"

The Rexx JavaFX utility program "put_FXID_objects_into.my.app.rex" in Code 8
below will be run via the Java script framework when line # 41 in Code 7
("fxml_pb.fxml") on page 24 above gets processed in line # 14 in Code 6 (main
ooRexx program "fxml_pb.rxj") on page 23 above.

"put_FXID_objects_into.my.app.rex" processes the Java script framework
ScriptContext of that particular invocation. Because of the location line # 41 in
Code 7 on page 24 above all JavaFX GUI components with "id" attributes have been
processed, such that they get stored in the global Bindings of the ScriptContext17

supplied to the Rexx program. As this Rexx programs gets executed via the
RexxScriptEngine it gets access to the BSF4ooRexx slotDir argument in line # 4
which contains the ScriptContext object and is therefore able to process the stored
global Bindings.

17 A ScriptContext usually contains a global Bindings indexed with the integer number 200 and an
engine (invocation dependent) Bindings with the integer number 100.

Anatomy of a GUI (Graphical User Interface) 26/40

1 if \.environment~hasEntry("my.app") then -- not there?
2 .environment~setEntry("my.app", .directory~new) -- create it!
3
4 slotDir=arg(arg()) -- get slotDir argument (BSF4ooRexx adds this as the last argument)
5 scriptContext=slotDir~scriptContext -- get entry "SCRIPTCONTEXT"
6
7 GLOBAL_SCOPE=200
8 -- "location" will have the URL for the FXML-file
9 url=scriptContext~getAttribute("location",GLOBAL_SCOPE)
10 fxmlFileName=filespec("name",url~getFile) -- make sure we only use the filename portion
11 dir2obj =.directory~new -- will contain all GLOBAL_SCOPE entries
12 .my.app~setEntry(fxmlFileName,dir2obj) -- add to .My.APP
13
14 bindings=scriptContext~getBindings(GLOBAL_SCOPE)
15 keys=bindings~keySet~makearray -- get the kay values as a Rexx array
16 do key over keys
17 val=bindings~get(key) -- fetch the key's value
18 dir2obj ~setEntry(key,val) -- save it in our directory
19 end

Code 8: "put_FXID_objects_into.my.app.rex" the utility program with line numbers.

The program first checks in line # 1 whether an entry "MY.APP" exists in the global
Rexx environment (environment symbol ".environment") and if it does not exist, it
will create a Rexx directory and store it under the name "MY.APP" in the global
environment in line # 2. As entries in Rexx environment directories can be
alternatively accessed by their environment symbols (entry name prepended with
a dot) it becomes possible to any Rexx program in the application to access that
directory by merely referring to it with its environment symbol ".MY.APP" (note the
leading dot).

After retrieving the slotDir argument in line # 4 its entry named "SCRIPTCONTEXT"
gets fetched in line # 5. Line # 9 fetches the URL object representing the FXML file
that called this Rexx script, line # 10 extracts its filename which gets assigned to
the Rexx variable "fxmlFileName". A Rexx directory gets created in line 11 and
assigned to the Rexx variable "dir2obj". This directory gets stored in the .MY.APP
directory with the index name being the value of "fxmlFileName".

Line # 14 retrieves the global Bindings from the ScriptContext and its entries will
be placed into "dir2obj" in the loop starting in line # 16 which can be retrieved via
".my.app~fxml_pb.fxml" from any Rexx program later.

The Rexx GUI controller program "fxml_pb_controller.rex"

The Rexx controller program "fxml_pb_controller.rex" in Code 9 below will be run
via the Java script framework when line # 44 in Code 7 ("fxml_pb.fxml") on page 24
above gets processed in line # 14 in Code 6 (main ooRexx program "fxml_pb.rxj")
on page 23 above.

"fxml_pb_controller.rex" defines two public routines, "onActionButtonStart" (line
1) and "onActionButtonExit" (line # 5) that get invoked by JavaFX exploiting the
Java script framework as defined in the FXML GUI definition file "fxml_pb.fxml"
(cf. the definition of the two push button's "onAction" attribute).

In addition a public Rexx class "Action" (line # 9) gets defined with a class attribute
"state" (line # 10) and the class methods "setRunning" (line # 15), "setStop" (line
32) and "setIdle"(line # 42) . The attribute may have one of three strings
representing the state of the application:

• "idle": this is the initial state (set in the class constructor method in line
13) in which the button "idButtonStart" will read "Start" and the
"idButtonExit" is enabled.

Anatomy of a GUI (Graphical User Interface) 27/40

Anatomy of a GUI (Graphical User Interface) 28/40

1 ::routine onActionButtonStart public -- invoked when "Start/Stop" button pressed
2 if .my.app~fxml_pb.fxml~idButtonStart~text="Start" then .action~setRunning
3 else .action~setStop
4
5 ::routine onActionButtonExit public -- exit the application
6 bsf.loadClass("javafx.application.Platform")~exit
7
8 /* Class to manage the current state of the application. */
9 ::class Action public
10 ::attribute state class -- states: "idle", "running", "stop"
11 ::method init class
12 expose state
13 state="idle" -- initialize to "idle"
14
15 ::method setRunning class -- invoked by pressing "Start" button, starts worker
16 expose state
17 if state<>"idle" then return -- worker runs already
18 fxml=.my.app~fxml_pb.fxml -- get access to JavaFX components (objects)
19 fxml~idButtonStart~disable=.true -- do not let user interact with this control
20 state="running"
21 fxml~idButtonExit~disable=.true
22 fxml~idLabelEnd~text =""
23 fxml~idLabelDuration~text=""
24 fxml~idLabelCurrent~text =""
25 now=.dateTime~new
26 .my.app~fxml_pb.fxml~startedAt=now -- save Rexx object
27 fxml~idLabelStart~text = now "(started)"
28 fxml~idButtonStart~text="Stop"
29 .my.app~worker~go(self) -- start worker, supply this class objec
30 fxml~idButtonStart~disable=.false -- allow interaction again
31
32 ::method setStop class -- invoked by pressing "Stop" button, stops worker
33 expose state
34 if state<>'running' then return -- not running, cannot stop
35 fxml=.my.app~fxml_pb.fxml -- get access to JavaFX controls
36 fxml~idButtonStart~disable=.true -- do not let user interact with this control
37 state="stop" -- worker will stop and invoke "setIdle" method
38 fxml~idButtonStart~text="Stopping..."
39 now=.dateTime~new
40 fxml~stoppedAt=now -- save Rexx object
41
42 ::method setIdle class -- invoked by worker on the GUI thread when finished
43 expose state
44 if wordpos(state,'running stop')=0 then return -- ignore
45 fxml=.my.app~fxml_pb.fxml -- get access to JavaFX controls
46 fxml~idButtonStart~disable=.true -- do not let user interact with this control
47 now=.dateTime~new
48 fxml~stoppedAt=now -- save Rexx .DateTime object for later use
49 now =.dateTime~new
50 fxml~idLabelEnd~text=now "(ended)"
51 duration =now - .my.app~fxml_pb.fxml~startedAt
52 fxml~idLabelDuration~text=duration "(duration)"
53 if state='stop' then -- indicate user stopped
54 do
55 current=fxml~idLabelCurrent~text
56 fxml~idLabelCurrent~text=current "(interrupted!)"
57 end
58 state="idle" -- communicate we can be started again
59 fxml~idButtonStart~text="Start"
60 fxml~idButtonStart~disable=.false -- allow interaction again
61 fxml~idButtonExit~disable=.false

Code 9: "fxml_pb_controller.rex" the controller Rexx program with line numbers.

• "running": this is the state where the worker thread updates the GUI
concurrently. The button "idButtonStart" will read "Stop..." and the
"idButtonExit" is disabled.

• "stop": this is the state where the running worker thread gets interrupted by
the user by pressing the "idButtonStart" button labeled "Stop..."., the
"idButtonExit" is disabled.

The current value of the Rexx attribute "state" can be interrogated from any
operating system thread without any side effects on the GUI management and gets
used to communicate the current state of the GUI program between the controller
and the worker. The following class methods, however, must be invoked on the GUI
thread as they interact directly with the JavaFX components:

• "setRunning"(line # 15) : if the state is "idle" (line # 17) it will set the GUI to
the running state, save the time of invocation in the .my.app~fxml_pb.fxml
directory under the entry "startedAT" (line # 26) for calculating the duration
of the run later (line # 51), renames the button to "Stop" (line # 28) and starts
the worker (line # 29), supplying the Action class object18 as an argument to
enable the worker to directly address the class attribute "state" and the class
methods.

• "setStop": this method gets invoked when the user presses the "Stop" push
button via the "onActionButtonStart" routine (line # 3), disables the push
button (line # 36), indicates to the worker that it should stop by setting the
state attribute to the value "stop" (line # 37), renames the button to
"Stopping..." (line # 38) and saves the actual DateTime object "now" in the
.my.app~fxml_pb.fxml directory under the entry "stoppedAT" (line # 40).

• "setIdle": this method will be invoked by the worker program from a
different thread, when either it finished its work (state attribute's value is
"running") or the user pressed the "Stop" button and the "setStop" class
method changes the value of the state attribute to "stop" (line # 37).

The Rexx Program "worker.rex" Updating the GUI From Another Thread

The Rexx program "worker.rex" in Code 10 below mimics the long running
processing on another operating system thread that updates the GUI for the user,

18 The special variable "self" will be set by the runtime system for each method: if it is a class
method, then "self" will be set to refer the class object, if it is an instance method "self" will
refer to the instance (object, value).

Anatomy of a GUI (Graphical User Interface) 29/40

such that she/he gets a visual feedback about the ongoing process and the
reassurance that the application has not hung.

The worker instance will count from 1 to 100, updating the GUI and sleeping 1/100
of a second after each tick.

It will be required in line # 6 in the main Rexx program "fxml_pb.rxj" (cf. Code 6 on
page 23 above) and thereby gains access to its public class "Worker". After the GUI
got loaded in the start method (line # 14) and as one result the .MY.APP directory
has become available, an instance of the "Worker" class gets created and saved in
the .MY.APP directory with the index name "worker" (line # 16). This instance will be
fetched in the controller program "fxml_pb_controller.rex" in the "Action's" class
method "setRunning" by sending the Worker object the message "go", supplying the
"Action's" class object to allow access to its class attribute "state" and its class
methods (cf. line # 29 in Code 9 on page 28 above).

The "go" method (line # 5 in Code 10 below) will fetch the supplied "Action" class
object (line # 6) thereby becoming able to access its "state" class attribute and its
class methods.

The reply keyword statement in line # 8 will cause the return of this message
invocation to the caller (cf. "fxml_pb_controller.rex", line # 29 in Code 9 on page 28

Anatomy of a GUI (Graphical User Interface) 30/40

1 ::requires "BSF.CLS"
2
3 ::class Worker public
4
5 ::method go
6 use arg clzAction -- get class object
7
8 reply -- return to caller, keep working on a separate thread
9 fxml=.my.app~fxml_pb.fxml -- get the corresponding FXML Rexx directory
10 pb =fxml~idProgressBar
11 lblCurrent=fxml~idLabelCurrent
12
13 do i=1 to 100 while clzAction~state="running"
14 -- update GUI controls on the "JavaFX Application Thread"
15 d=box("Double",i/100)
16 .FXGuiThread~runLaterLatest(pb, "setProgress", "individual", d)
17 .FXGuiThread~runLaterLatest(lblCurrent, "setText", "i" , i "%")
18
19 -- instead of sleeping, do the real work here! <-- <-- <--
20 call SysSleep 0.01 -- sleep 1/100 of a second
21 end
22 -- we need to send the message on the "JavaFX Application Thread"
23 msg=.FXGuiThread~runLater(clzAction, "setIdle")
24 res=msg~result -- this blocks until message was executed

Code 10: "worker.rex" the worker program with line numbers.

above) and at the same time the creation of a new operating system thread on
which the remaining Rexx statements of this method (lines # 9 through # 24 in in
Code 10 above) get executed concurrently:

• Lines # 9 through # 11 will fetch the JavaFX GUI components with the "id"
values "idProgressBar" and "idLabelCurrent" and store each reference in the
Rexx variables "pb" and "lblCurrent", respectively.

• The loop in line # 13 will repeat 100 times, unless the controller changed the
class attribute "state" from the value "running" when the user pressed the
"Stop" button.

• Line # 15 boxes the current Rexx value of the loop variable "i" into a Java
Double value (the percentage of completion) needed for updating the
progressbar in line # 16 using the "FxGuiThread" class' "runLaterLatest"
method to send off the message later, the next time the GUI event dispatch
thread gets control. For the same reason the "runLaterLatest" message gets
used in line # 17, this time to update the JavaFX label that displays the
current progress in a human legible form.

• Line # 20: this nutshell example's work unit is about sleeping 1/100 of a
second, such that the loop has a total execution time of one second, causing
the optical effect of an animated progress bar and label. In a real application
the real work would be done instead.

• Line # 23: at this point of execution the loop has either ended because the
worker concluded its work or because the user prematurely ended it by
pressing the "Stop" button causing a change in the "Action's" class attribute
"state" which causes the loop to end prematurely as well.

At this stage the worker thread uses the controller to place the GUI into the
idle state by running the "Action's" "setIdle" class method, which will
interact with the GUI by renaming the "Stop" button to "Start". Therefore
this message needs to be sent on the GUI thread later. In this case the
returned GUIMessage object that the "runLaterLatest" method creates and
returns will be fetched and assigned to the Rexx variable "msg".

• Line # 24: The "GUIMessage" object "msg" that got returned in line # 23 gets the
message "result" sent to it, which will block until a result becomes available
by the asynchronously running method routine. Once this message returns

Anatomy of a GUI (Graphical User Interface) 31/40

this invocation of the method "go" completes as well.

The informal UML sequence diagram in Figure 7 visualizes how the JavaFX
Platform.runLater(Runnable) method interfaces with the JavaFX event dispatcher:
conceptually a queue of Runnable objects serves as the means of communication
between the two. All messages in parentheses are informative, but are intended to
demonstrate how such an architecture could work. Red messages (red arrowed
lines) are sent/invoked on the GUI thread (a.k.a. "event dispatcher thread" or
"JavaFX Application Thread"). The BSF4ooRexx class "FxGuiThread" uses the
Platform.runLater(Runnable) method, but hides it from the ooRexx programmers.

4 Roundup and Outlook
Using BSF4ooRexx it becomes possible for Rexx programmers to create platform
independent GUI applications that run unchanged on Windows, Linux and MacOS,
if applying the Java GUI packages awt/swing or JavaFX (or for that matter, also
Eclipse's swt, cf. [6]).

Section 2, "Anatomy of a GUI", introduced the concepts that are needed for
creating responsive graphical user interface (GUI) applications. Section 2.1, "GUI
with Synchronisation Needs: awt/swing", p. 5, explained the execution of awt/swing
GUI applications and why one needs to synchronise the ooRexx main Rexx
program with the GUI that gets displayed and managed on a separate operating

Anatomy of a GUI (Graphical User Interface) 32/40

Figure 7: Informal UML sequence diagram depicting the JavaFX "runLater" infrastructure.

system thread. Using a nutshell example with detailed explanations the reader
should have become able to create successfully awt/swing GUI applications using
BSF4ooRexx on his/her own. Section 2.2, "GUI without Synchronisation Needs:
JavaFX", p. 10, explained the JavaFX architecture and its execution model. A
nutshell example that also uses a FXML text file for defining the GUI served as the
application that enables the reader to learn in detail the anatomy of JavaFX and
how the different parts play together.

Section 3, "Interacting with the JavaFX GUI from a Non-GUI-Thread", p. 18,
introduces the real-world problem of many applications, that code executing on
other threads than the GUI thread (a.k.a. "event dispatch thread", in the case of
JavaFX "JavaFX Application Thread"), but having a need to interact with the GUI
objects, which is only allowed on the GUI thread. The Java GUI packages contain
utility methods that allow for such an interaction on the GUI thread the next time
("later") the GUI thread takes on control, by submitting the event dispatch
management system java.lang.Runnable objects that get run on the GUI thread
later. As this solution is quite challenging for students who just learned
programming in ooRexx at the author's University, an ooRexx like solution to this
problem got devised for ooRexx: the ooRexx class "FxGuiThread". A comprehensive
nutshell example demonstrates such a JavaFX GUI application implemented in
ooRexx together with its anatomy – what parts exist for which purpose and how
these interplay with each other – being explained in detail. First experiences with
the WU students are quite promising: they have become able to create reactive,
stable JavaFX GUI applications in ooRexx quickly on their own. They assert that
doing so has become considerably easy with the help of the new ooRexx class
"FxGuiThread" available via the BSF.CLS package.

It is hoped that the thorough reader has become acquainted with awt/swing and
JavaFX GUI programming to the extent that she/he can create correct GUI
applications on her/his own.

It is planned to create an ooRexx class "AwtGUIThread" for the same purpose and
with the same behavior and interfaces as the "FxGuiThread" class, such that for
awt/swing GUI applications implemented in ooRexx it becomes as easy to interface
with the GUI from a worker Rexx thread as well.

Anatomy of a GUI (Graphical User Interface) 33/40

5 References
[1] "Abstract Window Toolkit (awt)". URL (as of 2018-03-01):

https://en.wikipedia.org/wiki/Abstract_Window_Toolkit

[2] "Java version history", Wikipedia (as of 2018-03-01):
https://en.wikipedia.org/wiki/Java_version_history

[3] "JavaFX SceneBuilder", a graphical design tool for JavaFX graphical user

interfaces stored in FXML files. URL (as of 2018-03-01):
https://gluonhq.com/products/scene-builder/

[4] "Open JDK Homepage" (as of 2018-03-01): https://openjdk.java.net/

[5] "Swing (Java)". URL (as of 2018-03-01):
https://en.wikipedia.org/wiki/Swing_(Java)

[6] "SWT: The Standard Widget Toolkit". URL (as of 2018-03-01):
https://www.eclipse.org/swt/

[7] "Unified Modeling Language (UML)". URL (as of 2018-03-01):
https://en.wikipedia.org/wiki/Unified_Modeling_Language

[8] "WU – Wirtschaftsuniversität Wien/Vienna University of Economics and

Business" (as of 2018-03-01): https://www.wu.ac.at/

[9] Flatscher R.G.: "'RexxScript' – Rexx Scripts Hosted and Evaluated by Java

(Package javax.script)", in: Proceedings of the “The 2017 International Rexx

Symposium”, Amsterdam, The Netherlands, April 9th - 12th 2017. URL (as of

2018-03-01):
http://www.rexxla.org/events/2017/presentations/201704-RexxScript-Article.pdf

[10] Flatscher R.G.: "JavaFX for ooRexx – Creating Powerful Portable GUIs for

ooRexx", in: Proceedings of the “The 2017 International Rexx Symposium”,

Amsterdam, The Netherlands, April 9th - 12th 2017. URL (as of 2018-03-01):
http://www.rexxla.org/events/2017/presentations/201704-RexxScript-Article.pdf

[11] Flatscher R.G.: "The New BSF4ooRexx 6.0", in: Proceedings of the “The 2018

International Rexx Symposium”, Aruba, Dutch West Indies,

March 25th – 29th 2018.

[12] Javadocs for the Java class javax.script.ScriptContext. URL (as of 2018-03-

01): https://docs.oracle.com/javase/8/docs/api/javax/script/ScriptContext.html

Anatomy of a GUI (Graphical User Interface) 34/40

[13] Javadocs for the Java interface class java.awt.event.ActionListener. URL (as

of 2018-03-01):
https://docs.oracle.com/javase/8/docs/api/java/awt/event/ActionListener.html

[14] Javadocs for the Java interface class java.awt.event.WindowListener. URL (as

of 2018-03-01):
https://docs.oracle.com/javase/8/docs/api/java/awt/event/WindowListener.html

[15] Javadocs for the Java interface class java.lang.reflect.Proxy. URL (as of

2018-03-01):
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Proxy.html

[16] Javadocs for the Java package javax.script (as of 2018-03-01):
https://docs.oracle.com/javase/8/docs/api/javax/script/package-summary.html

[17] Sourceforge download page for ooRexx 5.0 beta (as of 2018-03-01):
https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0beta/

[18] Sourceforge homepage BSF4ooRexx (acronym for "bean scripting framework

– BSF – for ooRexx"), an ooRexx and Java bridge (as of 2018-03-01):
https://sourceforge.net/projects/bsf4oorex

[19] Sourceforge homepage ooRexx ("open object-oriented Rexx"), a dynamically

typed scripting language (as of 2018-03-01):
http://www.rexxla.org/events/2017/presentations/201711-ooRexx-JavaFX-Article.pdf

Anatomy of a GUI (Graphical User Interface) 35/40

Appendix A A Glimpse at Multithreading in ooRexx
ooRexx employs cooperative multithreading and following the original Rexx
design principle of "human centeredness" tries to make it very easy for
programmers to take advantage of multithreading in ooRexx programs.

This appendix briefly characterizes the ooRexx multithreading concepts in order
to ease the understanding of the multithreaded Rexx code in this article.

Sending Messages on a Separate Operating System Thread

ooRexx – like SmallTalk – is a message based programming language. A message
sent to an object (a.k.a. "receiver"), will conceptually cause the object to look after a
method by the same name in its own class, and if not found in all of its
superclasses.19 The first method found will be executed by the receiver on behalf of
the message sender, supplying any received arguments to the method. A return
value from the invoked method will be returned by the object to the caller.

The method routine that gets invoked by the message receiver will execute on the
operating system thread that was used to dispatch the message.

Messages are first class objects ("FCO") in ooRexx and the runtime system will create
instances of the Rexx class Message for each of them. To communicate the message
object to the receiver (target) object, the Message20 class supplies two methods,
"send" which waits until the message completes ("synchronous execution") and
returns a result if any, and "start" which will dispatch the message on a separate,
independent operating system thread ("asynchronous execution"). In the latter case
the message object can be used to determine whether the asynchronously
executing method has completed and if not wait until it completes by sending the
"result" message to that asynchronously executing message object, which will
wait (block) until the message completes and then return its result, if any.

19 If a method by the name of the received message cannot be found in the inheritance tree it will
cause a runtime error with the condition '97.1 Object "object" does not understand
message "message"', with "object" being replaced with the receiver object, and "message" being
replaced with the actual message, that was not found.
Should a method by the name "UNKNOWN" exist in the inheritance tree, then instead of creating
this runtime condition that method will be invoked with two arguments instead: the first being
the name of the message for which no method was found, the second being an Array object
containing the message's arguments, if any. This is known as the ooRexx "UNKNOWN" mechanism.

20 It is advised to study the documentation for the "Message Class" in the ooRexx reference
"rexxref.pdf", subchapter "5.1. Fundamental Classes", to learn about all its available methods
and study the supplied code examples that demonstrate some important features.

Anatomy of a GUI (Graphical User Interface) 36/40

Another means to trigger multithreaded (asynchronous) execution of messages in
ooRexx is using the methods "start" and "startWith" defined for the root class
"Object", which will dispatch the message on a new operating system thread.

Running the Remainder of a Method on a Separate Operating System Thread

There is also a means for triggering multithreading when coding method routines:
ooRexx allows to return from the method routine with the REPLY keyword
instruction (instead of the RETURN keyword instruction) and execute the remaining
Rexx code on a new operating system thread concurrently. The REPLY keyword
instruction may denote a return value and must only be invoked once in a running
method routine.

Guarding Concurrently Running Methods

When a guarded method routine runs, ooRexx makes sure that no other guarded
method in the same class executes concurrently. The runtime system will
automatically block a guarded method of the same class ready to run on a different
operating system thread to make sure that the class' attributes21 integrity does not
get jeopardized by having two method routines concurrently changing the same
attribute's value.

The rules for guarding concurrently executing methods of the same class can be
determined with the "GUARDED" or "UNGUARDED" subkeywords on a method directive.
If either is missing then ooRexx by default applies "GUARDED". The subkeyword
"GUARDED" makes sure that only one of the "GUARDED" methods of the same class is
allowed to execute concurrently. Any method of the same class, if defined with the
subkeyword "UNGUARDED"22 is always allowed to run concurrently on a different
operating system thread.

A method routine may even control concurrency at a finer level by employing the
keyword statements GUARD ON (no other guarded method of the same class can run
concurrently anymore) or GUARD OFF (the current method releases its lock and
continues to execute "UNGUARDED" on its operating system thread, other guarded
methods of the same class can run concurrently again), which can even apply

21 "Object variable" is a synonym for "attribute". Attributes can be accessed and shared among
methods of the same class. The ooRexx "::ATTRIBUTE" directive allows one to easily define getter
and/or setter methods for a specific attribute of a class.

22 Methods that do not change attribute values of their class can safely be marked with the
"UNGUARDED" subkeyword as they would not be able to jeopardize the integrity of attributes.

Anatomy of a GUI (Graphical User Interface) 37/40

attributes from the class as control variables! The ooRexx runtime system will
guard the correct concurrent execution of method routines of the same class
according to the guards in effect.

Anatomy of a GUI (Graphical User Interface) 38/40

Appendix B BsfCreateRexxProxy(): Creating a Rexx Proxy for Java
The BSF4ooRexx package consists of a shared/dynamic library written in C++ that
defines external Rexx functions and in addition with a set of ooRexx
programs/packages like BSF.CLS which camouflages all of Java as ooRexx.

One external Rexx function is BsfCreateRexxProxy() which basically boxes
("wraps", "stores") an ooRexx object in a Java object. The resulting Java object can
be supplied to Java methods as an argument.

If a Java method gets invoked in such a BsfCreateRexxProxy() created Java object, it
actually causes a Rexx message (a "callback message") by the name of the invoked
Java method to be created together with the Java arguments and sent to the boxed
Rexx object. This message will get an additional argument appended by
BSF4ooRexx, the slotDir argument which can be fetched by the invoked ooRexx
method routine. The slotDir argument will usually also contain information about
the Java method invocation.

If the optional second argument to BsfCreateRexxProxy() was supplied by the Rexx
program, then this very Rexx argument will be contained in the slotDir argument
and can be retrieved with the index name "USERDATA". This way ooRexx
programmers can store any Rexx object for later use in callback messages.

For the purpose of this article the two relevant variants of BsfCreateRexxProxy() get
briefly explained. Both variants expect a Rexx object that implements the abstract
methods23, either from Java interface classes or from abstract Java classes. The
second argument is optional (indicated by enclosing it in square brackets below).
The third argument is either a Java interface class that defines one or more
abstract methods or an abstract Java class that defines one or more abstract
methods:

• variant "third argument is a Java interface class": in this case it is possible to
append in addition any number of additional Java interface classes delimited
by commas. The Rexx object is expected to implement all abstract methods
of all the listed Java interface classes! The returned Java object (boxing the

23 It would be possible to take advantage of the Rexx unknown mechanism and create a method
named "UNKNOWN" that serves all abstract method invocations. This method will receive two
arguments: the name of the message (the name of the Java method) and an array containing all
arguments that the Java method invocation contained plus the BSF4ooRexx appended "slotDir"
argument of type "Slot.Argument" as the last array element.

Anatomy of a GUI (Graphical User Interface) 39/40

first Rexx argument) is of type

"java.lang.reflect.Proxy" [15]

and can be used as a Java argument wherever a type of one of the listed Java
interface classes is needed.

• variant "third argument is an abstract Java class": in this case it is possible to
append in addition any number of arguments delimited by commas for one
of the Java constructors of the abstract Java class.

This variant of BsfCreateRexxProxy() will dynamically create a Java class
that extends the abstract Java class and implements the abstract methods to
send the boxed Rexx object appropriate messages, forwarding all received
Java arguments in the received order. Then an instance of the dynamically
created Java class gets created, supplying any supplied arguments in the
same order to the Java constructor, if any. Also in this case the boxed Rexx
object is expected to implement all abstract methods of the abstract Java
class. The returned Java object (boxing the first Rexx argument) will be of
type

"org.rexxla.bsf.engines.rexx.onTheFly.XXX_$RexxExtendClass$_YYY"24

and can be used as a Java argument wherever a type of the abstract Java
class is needed.

24 The substring "XXX" will be replaced by the unqualified name of the extended abstract Java
class, the substring "YYY" will be replaced by some random hexadecimal number.

Anatomy of a GUI (Graphical User Interface) 40/40

	1 Introduction
	2 Anatomy of a GUI
	2.1 GUI with Synchronisation Needs: awt/swing
	2.2 GUI without Synchronisation Needs: JavaFX

	3 Interacting with the JavaFX GUI from a Non-GUI-Thread
	4 Roundup and Outlook
	5 References
	[1] "Abstract Window Toolkit (awt)". URL (as of 2018-03-01): https://en.wikipedia.org/wiki/Abstract_Window_Toolkit
	[2] "Java version history", Wikipedia (as of 2018-03-01): https://en.wikipedia.org/wiki/Java_version_history
	[3] "JavaFX SceneBuilder", a graphical design tool for JavaFX graphical user interfaces stored in FXML files. URL (as of 2018-03-01): https://gluonhq.com/products/scene-builder/
	[4] "Open JDK Homepage" (as of 2018-03-01): https://openjdk.java.net/
	[5] "Swing (Java)". URL (as of 2018-03-01): https://en.wikipedia.org/wiki/Swing_(Java)
	[6] "SWT: The Standard Widget Toolkit". URL (as of 2018-03-01): https://www.eclipse.org/swt/
	[7] "Unified Modeling Language (UML)". URL (as of 2018-03-01): https://en.wikipedia.org/wiki/Unified_Modeling_Language
	[8] "WU – Wirtschaftsuniversität Wien/Vienna University of Economics and Business" (as of 2018-03-01): https://www.wu.ac.at/
	[9] Flatscher R.G.: "'RexxScript' – Rexx Scripts Hosted and Evaluated by Java (Package javax.script)", in: Proceedings of the “The 2017 International Rexx Symposium”, Amsterdam, The Netherlands, April 9th - 12th 2017. URL (as of 2018-03-01): http://www.rexxla.org/events/2017/presentations/201704-RexxScript-Article.pdf
	[10] Flatscher R.G.: "JavaFX for ooRexx – Creating Powerful Portable GUIs for ooRexx", in: Proceedings of the “The 2017 International Rexx Symposium”, Amsterdam, The Netherlands, April 9th - 12th 2017. URL (as of 2018-03-01): http://www.rexxla.org/events/2017/presentations/201704-RexxScript-Article.pdf
	[11] Flatscher R.G.: "The New BSF4ooRexx 6.0", in: Proceedings of the “The 2018 International Rexx Symposium”, Aruba, Dutch West Indies, March 25th – 29th 2018.
	[12] Javadocs for the Java class javax.script.ScriptContext. URL (as of 2018-03-01): https://docs.oracle.com/javase/8/docs/api/javax/script/ScriptContext.html
	[13] Javadocs for the Java interface class java.awt.event.ActionListener. URL (as of 2018-03-01): https://docs.oracle.com/javase/8/docs/api/java/awt/event/ActionListener.html
	[14] Javadocs for the Java interface class java.awt.event.WindowListener. URL (as of 2018-03-01): https://docs.oracle.com/javase/8/docs/api/java/awt/event/WindowListener.html
	[15] Javadocs for the Java interface class java.lang.reflect.Proxy. URL (as of 2018-03-01): https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Proxy.html
	[16] Javadocs for the Java package javax.script (as of 2018-03-01): https://docs.oracle.com/javase/8/docs/api/javax/script/package-summary.html
	[17] Sourceforge download page for ooRexx 5.0 beta (as of 2018-03-01): https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0beta/
	[18] Sourceforge homepage BSF4ooRexx (acronym for "bean scripting framework – BSF – for ooRexx"), an ooRexx and Java bridge (as of 2018-03-01): https://sourceforge.net/projects/bsf4oorex
	[19] Sourceforge homepage ooRexx ("open object-oriented Rexx"), a dynamically typed scripting language (as of 2018-03-01): http://www.rexxla.org/events/2017/presentations/201711-ooRexx-JavaFX-Article.pdf
	Appendix A A Glimpse at Multithreading in ooRexx
	Appendix B BsfCreateRexxProxy(): Creating a Rexx Proxy for Java

