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Overview

● Interaction with users
● Windows dependent interactions
● Platform independent interactions

– BSF4ooRexx

– Platform independent class BSF.Dialog

● Anatomy of a GUI
– Using awt and swing

– Using JavaFX  

● Roundup and outlook
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Interaction with Users, 1

● From time to time input from users is needed
– Fetch input data to be processed

– Display and allow input for desired choices

● Sometimes the user needs to be informed
– About conditions that have occurred

– Progress a longer running function takes

● Command-line Rexx
– SAY statements for outputs

– PARSE PULL statements for inputs



2018-03-26 Anatomy of a GUI 4

Interaction with Users, 2

● Rexx programs that use SAY and PARSE
PULL statements execute in a single thread

● Getting input halts execution of the Rexx
program until the user pressed enter
– No need to synchronize the Rexx program with the

user input
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Windows Dependent Interactions

● ooDialog
– Windows only GUI solution

– Originally with a development environment
● Included a user interface builder

● Open Object Rexx version
– Without development environment

● For leagal reasons IBM could not opensource it

– Instead manually creating Windows resource files
● Possible to use some resource editor programs

– Outdated, no active development, yet still feasible 
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Platform Independent Interactions

● BSF4ooRexx
– ooRexx Java bridge

– Java: "compile once, run everywhere"
● Truly enables platform independence
● BSF4ooRexx exists for Windows, Linux, MacOSX, AIX,

s390x
● All BSF4ooRexx samples run unchanged on all those

platforms
● Opens access to Java GUI classes and infrastructure!

– java.awt (abstract windows toolkit) package
– javax.swing package 
– javafx package plus SceneBuilder to create GUIs interactively
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BSF.CLS – Class BSF.DIALOG, 1

● Class BSF.DIALOG defines class methods to
create blocking popup windows on all operating
systems

● messageBox 
– Informs the user, can be also a warning or error

● dialogBox
– Allows the user to chose which button to click

● inputBox
– Allows the user to supply input to the program

● Waits until user pressed a button or picked a choice
– Comparable to using PARSE PULL, just much more versatile!
– Cf. samples/1-020_demo.BSF.dialog.rxj
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BSF.CLS – Class BSF.DIALOG, 2

say "Demonstrating .bsf.dialog~messageBox(...):"
/* arguments: message, title, messageType */
.bsf.dialog~messageBox("This is an informal message")
.bsf.dialog~messageBox("This is an informal message", "A title text")
.bsf.dialog~messageBox("This is an informal message", "A title text", "info")
.bsf.dialog~messageBox("This is an error message",    "A title text", "error")
say "---"

say "Demonstrating .bsf.dialog~dialogBox(...):"
/* arguments: message, title, messageType, optionType, icon, textOfButtons, defaultButton */
res=.bsf.dialog~dialogBox("Shall we delete?", , "question",  "YesNoCancel")
say "dialogBox: you picked button #" res

txtButtons=.list~of("Tickle Alice", "Tickle Berta", "Tickle Cindy")
defButton ="Tickle Berta"
res=.bsf.dialog~dialogBox("Please pick a button", , "question", , , txtButtons, defButton)
say "dialogBox: you picked button #" res
say "---"

say "Demonstrating .bsf.dialog~inputBox(...):"
/* arguments: message, title, messageType, icon, textOfOptions, defaultValue */
res=.bsf.dialog~inputBox("Enter something!")
say "inputBox: you entered" pp(res)

txtOptions=.list~of("Tickle Alice", "Tickle Berta", "Tickle Cindy")
defaultTxtOption="Tickle Berta"
res=.bsf.dialog~inputBox("Pick something!", "Choice Dialog", "plain", , txtOptions, 
defaultTxtOption)
say "inputBox: you picked" pp(res)

::requires BSF.CLS
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Anatomy of a GUI, 1

● If a GUI element gets created, then
– The GUI subsystem creates an own "GUI Thread" !

– Interaction with GUI elements/objects is only
allowed on the "GUI Thread"

● Otherwise the GUI hangs, the program blocks!
● The user cannot interact with the program anymore!

● Usually
– One supplies a callback method that will be invoked

on the "GUI Thread"

– Then it is safe to interact with all GUI elements
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Anatomy of a GUI, 2

● Interacting with GUI elements/objects from
another Rexx thread
– Usually a service function/method from the GUI

management is needed to be used instead

– One needs to register the need for a callback on the
GUI thread

– The next time the GUI thread is used by the GUI
management the registered callbacks get carried
out on the "GUI Thread"  
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Anatomy of a GUI, 3

● Graphical subsystems in operating systems
– Windows

– Linux

– MacOSX

● Programming environment with "GUI Thread"
– Windows GUIs including ooDialog

● Java packages available on all operating
systems
– java.awt, javax.swing and javafx GUIs
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GUI With Synchronisation Needs, 1

● If "GUI Thread" totally independent of others
● Need to synchronize with "GUI Thread"!
● Otherwise the Rexx program ends, tearing down the GUI 
● Java packages java.awt, javax.swing

● ooRexx multi-threading to the rescue! ;)
● Setup the GUI

– User will become able to interact immediately

● Block the main Rexx program by calling a blocking
method after setup, waiting for the GUI to close

● Define a callback for the GUI event that indicates that
Window closes, that releases the blocked method

– Blocked main Rexx program will be able to continue its work
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GUI With Synchronisation Needs, 2

● A simple "helloWorld.rxj" example
– Creates a window with a title (a "Frame")

● Closing it should end the Rexx program via a callback

– Creates a button with a text
● Clicking it should end the Rexx program via a callback

– After creating the GUI and displaying the frame
● The Rexx program waits/blocks until the frame gets

closed or the button clicked

– There is an ooRexx class defined that will
● Allow blocking
● Defines the necessary callback methods
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GUI With Synchronisation Needs, 3a

   -- The Rexx class implements blocking and the methods for the Java callbacks
   -- "actionPerformed" (ActionListener) and "windowClosing" (WindowListener)
::class RexxCloseAppEventHandler

::method init               -- Rexx constructor method
  expose lock
  lock=.true                -- if set to .false, then release block

::method waitForExit        -- method blocks until attribute is set to .true
  expose lock
  guard on when lock=.false -- clever ooRexx way to block! :)

::method actionPerformed    -- event method (from ActionListener)
  expose lock
  lock=.false               -- indicate that the app should close

::method unknown            -- intercept unhandled events, do nothing

::method windowClosing      -- event method (from WindowListener)
  expose lock
  lock=.false               -- indicate that the app should close
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GUI With Synchronisation Needs, 3b

    -- create instance/value of our Rexx class
rexxCloseEH =.RexxCloseAppEventHandler~new   -- Rexx event handler

   -- Create Java RexxProxy for the Rexx event handler
javaCloseEH=BsfCreateRexxProxy(rexxCloseEH, , - /* Rexx object to box  */
            "java.awt.event.ActionListener",  - /* actionPerformed     */
            "java.awt.event.WindowListener" )   /* windowClosing       */

    -- create a Java awt window with a title
window=.bsf~new("java.awt.Frame", 'Hello World!')
window~addWindowListener(javaCloseEH)       -- register event handler

    -- create a Java awt window with a title
button=.bsf~new("java.awt.Button", 'Press Me !')
button~addActionListener(javaCloseEH)       -- register event handler

    -- prepare window and show it, using cascading messages (two twiddles '~')
window ~~add(button) ~~pack ~~setSize(200,60) ~~setVisible(.true) ~~toFront

rexxCloseEH~waitForExit -- blocks until user closes the Window (Frame)

::REQUIRES BSF.CLS      -- get the Java support
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GUI With Synchronisation Needs, 3c

    -- create instance/value of our Rexx class
rexxCloseEH =.RexxCloseAppEventHandler~new   -- Rexx event handler

   -- Create Java RexxProxy for the Rexx event handler
javaCloseEH=BsfCreateRexxProxy(rexxCloseEH, , - /* Rexx object to box  */
            "java.awt.event.ActionListener",  - /* actionPerformed     */
            "java.awt.event.WindowListener" )   /* windowClosing       */

    -- create a Java awt window with a title
window=.bsf~new("java.awt.Frame", 'Hello World!')
window~addWindowListener(javaCloseEH)       -- register event handler

    -- create a Java awt window with a title
button=.bsf~new("java.awt.Button", 'Press Me !')
button~addActionListener(javaCloseEH)       -- register event handler

    -- prepare window and show it, using cascading messages (two twiddles '~')
window ~~add(button) ~~pack ~~setSize(200,60) ~~setVisible(.true) ~~toFront

rexxCloseEH~waitForExit -- blocks until user closes the Window (Frame)

::REQUIRES BSF.CLS      -- get the Java support

/* ------------------------------------------------------------------------ */
   -- The Rexx class implements blocking and the methods for the Java callbacks
   -- "actionPerformed" (ActionListener) and "windowClosing" (WindowListener)
::class RexxCloseAppEventHandler

::method init               -- Rexx constructor method
  expose lock
  lock=.true                -- if set to .false, then release block

::method waitForExit        -- method blocks until attribute is set to .true
  expose lock
  guard on when lock=.false -- clever ooRexx way to block! :)

::method actionPerformed    -- event method (from ActionListener)
  expose lock
  lock=.false               -- indicate that the app should close

::method unknown            -- intercept unhandled events, do nothing

::method windowClosing      -- event method (from WindowListener)
  expose lock
  lock=.false               -- indicate that the app should close
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GUI Without Synchronisation Needs, 1

● JavaFX
– Creating GUI with SceneBuilder

● GUI stored in FXML file

– Creating a Rexx program
● Need to extend/subclass javafx.application.Application
● Implement its method start 
● Run the launch method
● JavaFX will block that application object until the user

closes the GUI!
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GUI Without Synchronisation Needs, 2a

rxApp=.RexxApplication~new -- create Rexx object that will control the FXML set up
jrxApp=BSFCreateRexxProxy(rxApp, ,"javafx.application.Application")
jrxApp~launch(jrxApp~getClass, .nil)    -- launch the application, invokes "start"

::requires "BSF.CLS" -- get Java support

-- Rexx class implements "javafx.application.Application" abstract method "start"
::class RexxApplication -- implements the abstract class "javafx.application.Application"

::method start -- Rexx method "start" implements the abstract method
  use arg primaryStage -- fetch the primary stage (window)
  primaryStage~setTitle("Hello JavaFX from ooRexx! (Green Version)")

   -- create an URL for the FMXLDocument.fxml file (hence the protocol "file:")
  fxmlUrl=.bsf~new("java.net.URL", "file:fxml_01.fxml")
   -- use FXMLLoader to load the FXML and create the GUI graph from its definitions:
  rootNode=bsf.loadClass("javafx.fxml.FXMLLoader")~load(fxmlUrl)

  scene=.bsf~new("javafx.scene.Scene", rootNode) -- create a scene
  primaryStage~setScene(scene) -- set the stage to our scene
  primaryStage~show -- show the stage (and thereby our scene)
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GUI Without Synchronisation Needs, 2b

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.control.Button?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.layout.AnchorPane?>

<!-- use the Java scripting engine named 'rexx' in this file -->
<?language rexx?>

<AnchorPane id="AnchorPane" prefHeight="200" prefWidth="400"
            xmlns:fx="http://javafx.com/fxml/1">
    <!-- Rexx buttonClicked callback -->
    <fx:script source="fxml_01_controller.rex" />

    <children>
        <Button fx:id="idButton1" layoutX="170.0" layoutY="89.0"
                      onAction="slotDir=arg(arg()); call buttonClicked slotDir;"
                      text="Click Me!" textFill="GREEN" />

        <Label fx:id="idLabel1" alignment="CENTER" contentDisplay="CENTER"
                                layoutX="76.0" layoutY="138.0"
                                minHeight="16"     minWidth="49"
                                prefHeight="16.0" prefWidth="248.0"
                                textFill="GREEN" />
    </children>
</AnchorPane>
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GUI Without Synchronisation Needs, 2c

::routine buttonClicked public
  slotDir=arg(arg())  -- note: last argument is the slotDir argument from BSF4ooRexx
  now=.dateTime~new -- time of invocation
  say now": arrived in routine 'buttonClicked' ..."

  /* @get(idLabel1) */
  say '... current value of label='pp(idLabel1~getText)
  idLabel1~text="Clicked at:" now         -- set text property
  say '...     new value of label='pp(idLabel1~getText)
  say
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Updates to GUI From Another Thread, 1

● Possible to have Rexx threads in parallel
– Long running operations

– Need to give user feedback about progress

– Desire to use the GUI to inform the user

– Updating a GUI element from a Rexx thread
● Hangs the GUI and as a result 
● Hangs the application for the user

– Proper way
● Inform the GUI to call back on the "GUI Thread" later
● Depends on the GUI system one uses
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Updates to GUI From Another Thread, 2

● JavaFX
– Own GUI mangagement

– "GUI Thread" dubbed "JavaFX Application Thread"
● Too long of a term

– "javafx.application.Platform"
● Class method runLater(Runnable)
● Allows to have the Runnable code executed on the "GUI

Thread" later

● Students, even skilled and informed were not
able to properly use this class
– Need to find a more "human centric" solution
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Updates to GUI From Another Thread, 3

● BSF4ooRexx
– Class FXGuiThread methods

● IsGuiThread
– Returns .tru/.false

● runLater(GUI_object, message, …)
– Returns GUIMessage object

● runLaterLatest(GUI_object, message, …)
– Returns GUIMessage object

– Class GUIMessage
● Modelled after ooRexx class Message

– Can directly use its documentation

● Possible to wait on message to have executed
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Updates to GUI From Another Thread, 4

● samples/JavaFX/fxml_06
– GUI progress bar sample

– GUI progress indicator gets updated from a worker
Rexx thread 

– As the user may interrupt the Rexx thread at any
time via the GUI the worker thread needs to learn
about it

● Need to create a communication protocol!
● Cf. class Action in fxml_pb_controller.rex
● Communication via Rexx can be done without problems

between the "GUI Thread" and the Rexx worker thread
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Updates From Rexx Worker Thread, 1

::requires "BSF.CLS"

::class Worker public

::method go
  use arg clzAction  -- get class object

  reply     -- return to caller, keep working on a separate thread
  fxml=.my.app~fxml_pb.fxml  -- get the corresponding FXML Rexx directory
  pb        =fxml~idProgressBar
  lblCurrent=fxml~idLabelCurrent

  do i=1 to 100 while clzAction~state="running"
      -- update GUI controls on the "JavaFX Application Thread"
     d=box("Double",i/100)
     .FXGuiThread~runLaterLatest(pb, "setProgress", "individual", d)
     .FXGuiThread~runLaterLatest(lblCurrent, "setText", "indiv" , i "%")

      -- instead of sleeping, do the real work here!  <-- <-- <--
     call SysSleep 0.01    -- sleep 1/100 of a second
  end
   -- we need to send the message on the "JavaFX Application Thread"
  msg=.FXGuiThread~runLater(clzAction, "setIdle")
  res=msg~result  -- this blocks until message was executed
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Updates From Rexx Worker Thread, 2
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Roundup and Outlook

● Creating cross-operating system GUIs easy
● Possible problem

– Interacting with GUI element from a non "GUI
Thread"

● Hangs the GUI, hangs the user interface!

– Solution for JavaFX applications
● Rexx class FXGuiThread
● Easy to use
● Makes it easy to create bullet-proof Rexx-GUI

applications!
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