
Anatomy of a GUI (Graphical User Interface)
Rony G. Flatscher, WU

2018 International Rexx Symposium

2018-03-26 Anatomy of a GUI 2

Overview

● Interaction with users
● Windows dependent interactions
● Platform independent interactions

– BSF4ooRexx

– Platform independent class BSF.Dialog

● Anatomy of a GUI
– Using awt and swing

– Using JavaFX

● Roundup and outlook

2018-03-26 Anatomy of a GUI 3

Interaction with Users, 1

● From time to time input from users is needed
– Fetch input data to be processed

– Display and allow input for desired choices

● Sometimes the user needs to be informed
– About conditions that have occurred

– Progress a longer running function takes

● Command-line Rexx
– SAY statements for outputs

– PARSE PULL statements for inputs

2018-03-26 Anatomy of a GUI 4

Interaction with Users, 2

● Rexx programs that use SAY and PARSE
PULL statements execute in a single thread

● Getting input halts execution of the Rexx
program until the user pressed enter
– No need to synchronize the Rexx program with the

user input

2018-03-26 Anatomy of a GUI 5

Windows Dependent Interactions

● ooDialog
– Windows only GUI solution

– Originally with a development environment
● Included a user interface builder

● Open Object Rexx version
– Without development environment

● For leagal reasons IBM could not opensource it

– Instead manually creating Windows resource files
● Possible to use some resource editor programs

– Outdated, no active development, yet still feasible

2018-03-26 Anatomy of a GUI 6

Platform Independent Interactions

● BSF4ooRexx
– ooRexx Java bridge

– Java: "compile once, run everywhere"
● Truly enables platform independence
● BSF4ooRexx exists for Windows, Linux, MacOSX, AIX,

s390x
● All BSF4ooRexx samples run unchanged on all those

platforms
● Opens access to Java GUI classes and infrastructure!

– java.awt (abstract windows toolkit) package
– javax.swing package
– javafx package plus SceneBuilder to create GUIs interactively

2018-03-26 Anatomy of a GUI 7

BSF.CLS – Class BSF.DIALOG, 1

● Class BSF.DIALOG defines class methods to
create blocking popup windows on all operating
systems

● messageBox
– Informs the user, can be also a warning or error

● dialogBox
– Allows the user to chose which button to click

● inputBox
– Allows the user to supply input to the program

● Waits until user pressed a button or picked a choice
– Comparable to using PARSE PULL, just much more versatile!
– Cf. samples/1-020_demo.BSF.dialog.rxj

2018-03-26 Anatomy of a GUI 8

BSF.CLS – Class BSF.DIALOG, 2

say "Demonstrating .bsf.dialog~messageBox(...):"
/* arguments: message, title, messageType */
.bsf.dialog~messageBox("This is an informal message")
.bsf.dialog~messageBox("This is an informal message", "A title text")
.bsf.dialog~messageBox("This is an informal message", "A title text", "info")
.bsf.dialog~messageBox("This is an error message", "A title text", "error")
say "---"

say "Demonstrating .bsf.dialog~dialogBox(...):"
/* arguments: message, title, messageType, optionType, icon, textOfButtons, defaultButton */
res=.bsf.dialog~dialogBox("Shall we delete?", , "question", "YesNoCancel")
say "dialogBox: you picked button #" res

txtButtons=.list~of("Tickle Alice", "Tickle Berta", "Tickle Cindy")
defButton ="Tickle Berta"
res=.bsf.dialog~dialogBox("Please pick a button", , "question", , , txtButtons, defButton)
say "dialogBox: you picked button #" res
say "---"

say "Demonstrating .bsf.dialog~inputBox(...):"
/* arguments: message, title, messageType, icon, textOfOptions, defaultValue */
res=.bsf.dialog~inputBox("Enter something!")
say "inputBox: you entered" pp(res)

txtOptions=.list~of("Tickle Alice", "Tickle Berta", "Tickle Cindy")
defaultTxtOption="Tickle Berta"
res=.bsf.dialog~inputBox("Pick something!", "Choice Dialog", "plain", , txtOptions,
defaultTxtOption)
say "inputBox: you picked" pp(res)

::requires BSF.CLS

2018-03-26 Anatomy of a GUI 9

Anatomy of a GUI, 1

● If a GUI element gets created, then
– The GUI subsystem creates an own "GUI Thread" !

– Interaction with GUI elements/objects is only
allowed on the "GUI Thread"

● Otherwise the GUI hangs, the program blocks!
● The user cannot interact with the program anymore!

● Usually
– One supplies a callback method that will be invoked

on the "GUI Thread"

– Then it is safe to interact with all GUI elements

2018-03-26 Anatomy of a GUI 10

Anatomy of a GUI, 2

● Interacting with GUI elements/objects from
another Rexx thread
– Usually a service function/method from the GUI

management is needed to be used instead

– One needs to register the need for a callback on the
GUI thread

– The next time the GUI thread is used by the GUI
management the registered callbacks get carried
out on the "GUI Thread"

2018-03-26 Anatomy of a GUI 11

Anatomy of a GUI, 3

● Graphical subsystems in operating systems
– Windows

– Linux

– MacOSX

● Programming environment with "GUI Thread"
– Windows GUIs including ooDialog

● Java packages available on all operating
systems
– java.awt, javax.swing and javafx GUIs

2018-03-26 Anatomy of a GUI 12

GUI With Synchronisation Needs, 1

● If "GUI Thread" totally independent of others
● Need to synchronize with "GUI Thread"!
● Otherwise the Rexx program ends, tearing down the GUI
● Java packages java.awt, javax.swing

● ooRexx multi-threading to the rescue! ;)
● Setup the GUI

– User will become able to interact immediately

● Block the main Rexx program by calling a blocking
method after setup, waiting for the GUI to close

● Define a callback for the GUI event that indicates that
Window closes, that releases the blocked method

– Blocked main Rexx program will be able to continue its work

2018-03-26 Anatomy of a GUI 13

GUI With Synchronisation Needs, 2

● A simple "helloWorld.rxj" example
– Creates a window with a title (a "Frame")

● Closing it should end the Rexx program via a callback

– Creates a button with a text
● Clicking it should end the Rexx program via a callback

– After creating the GUI and displaying the frame
● The Rexx program waits/blocks until the frame gets

closed or the button clicked

– There is an ooRexx class defined that will
● Allow blocking
● Defines the necessary callback methods

2018-03-26 Anatomy of a GUI 14

GUI With Synchronisation Needs, 3a

 -- The Rexx class implements blocking and the methods for the Java callbacks
 -- "actionPerformed" (ActionListener) and "windowClosing" (WindowListener)
::class RexxCloseAppEventHandler

::method init -- Rexx constructor method
 expose lock
 lock=.true -- if set to .false, then release block

::method waitForExit -- method blocks until attribute is set to .true
 expose lock
 guard on when lock=.false -- clever ooRexx way to block! :)

::method actionPerformed -- event method (from ActionListener)
 expose lock
 lock=.false -- indicate that the app should close

::method unknown -- intercept unhandled events, do nothing

::method windowClosing -- event method (from WindowListener)
 expose lock
 lock=.false -- indicate that the app should close

2018-03-26 Anatomy of a GUI 15

GUI With Synchronisation Needs, 3b

 -- create instance/value of our Rexx class
rexxCloseEH =.RexxCloseAppEventHandler~new -- Rexx event handler

 -- Create Java RexxProxy for the Rexx event handler
javaCloseEH=BsfCreateRexxProxy(rexxCloseEH, , - /* Rexx object to box */
 "java.awt.event.ActionListener", - /* actionPerformed */
 "java.awt.event.WindowListener") /* windowClosing */

 -- create a Java awt window with a title
window=.bsf~new("java.awt.Frame", 'Hello World!')
window~addWindowListener(javaCloseEH) -- register event handler

 -- create a Java awt window with a title
button=.bsf~new("java.awt.Button", 'Press Me !')
button~addActionListener(javaCloseEH) -- register event handler

 -- prepare window and show it, using cascading messages (two twiddles '~')
window ~~add(button) ~~pack ~~setSize(200,60) ~~setVisible(.true) ~~toFront

rexxCloseEH~waitForExit -- blocks until user closes the Window (Frame)

::REQUIRES BSF.CLS -- get the Java support

2018-03-26 Anatomy of a GUI 16

GUI With Synchronisation Needs, 3c

 -- create instance/value of our Rexx class
rexxCloseEH =.RexxCloseAppEventHandler~new -- Rexx event handler

 -- Create Java RexxProxy for the Rexx event handler
javaCloseEH=BsfCreateRexxProxy(rexxCloseEH, , - /* Rexx object to box */
 "java.awt.event.ActionListener", - /* actionPerformed */
 "java.awt.event.WindowListener") /* windowClosing */

 -- create a Java awt window with a title
window=.bsf~new("java.awt.Frame", 'Hello World!')
window~addWindowListener(javaCloseEH) -- register event handler

 -- create a Java awt window with a title
button=.bsf~new("java.awt.Button", 'Press Me !')
button~addActionListener(javaCloseEH) -- register event handler

 -- prepare window and show it, using cascading messages (two twiddles '~')
window ~~add(button) ~~pack ~~setSize(200,60) ~~setVisible(.true) ~~toFront

rexxCloseEH~waitForExit -- blocks until user closes the Window (Frame)

::REQUIRES BSF.CLS -- get the Java support

/* -- */
 -- The Rexx class implements blocking and the methods for the Java callbacks
 -- "actionPerformed" (ActionListener) and "windowClosing" (WindowListener)
::class RexxCloseAppEventHandler

::method init -- Rexx constructor method
 expose lock
 lock=.true -- if set to .false, then release block

::method waitForExit -- method blocks until attribute is set to .true
 expose lock
 guard on when lock=.false -- clever ooRexx way to block! :)

::method actionPerformed -- event method (from ActionListener)
 expose lock
 lock=.false -- indicate that the app should close

::method unknown -- intercept unhandled events, do nothing

::method windowClosing -- event method (from WindowListener)
 expose lock
 lock=.false -- indicate that the app should close

2018-03-26 Anatomy of a GUI 17

GUI Without Synchronisation Needs, 1

● JavaFX
– Creating GUI with SceneBuilder

● GUI stored in FXML file

– Creating a Rexx program
● Need to extend/subclass javafx.application.Application
● Implement its method start
● Run the launch method
● JavaFX will block that application object until the user

closes the GUI!

2018-03-26 Anatomy of a GUI 18

GUI Without Synchronisation Needs, 2a

rxApp=.RexxApplication~new -- create Rexx object that will control the FXML set up
jrxApp=BSFCreateRexxProxy(rxApp, ,"javafx.application.Application")
jrxApp~launch(jrxApp~getClass, .nil) -- launch the application, invokes "start"

::requires "BSF.CLS" -- get Java support

-- Rexx class implements "javafx.application.Application" abstract method "start"
::class RexxApplication -- implements the abstract class "javafx.application.Application"

::method start -- Rexx method "start" implements the abstract method
 use arg primaryStage -- fetch the primary stage (window)
 primaryStage~setTitle("Hello JavaFX from ooRexx! (Green Version)")

 -- create an URL for the FMXLDocument.fxml file (hence the protocol "file:")
 fxmlUrl=.bsf~new("java.net.URL", "file:fxml_01.fxml")
 -- use FXMLLoader to load the FXML and create the GUI graph from its definitions:
 rootNode=bsf.loadClass("javafx.fxml.FXMLLoader")~load(fxmlUrl)

 scene=.bsf~new("javafx.scene.Scene", rootNode) -- create a scene
 primaryStage~setScene(scene) -- set the stage to our scene
 primaryStage~show -- show the stage (and thereby our scene)

2018-03-26 Anatomy of a GUI 19

GUI Without Synchronisation Needs, 2b

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.control.Button?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.layout.AnchorPane?>

<!-- use the Java scripting engine named 'rexx' in this file -->
<?language rexx?>

<AnchorPane id="AnchorPane" prefHeight="200" prefWidth="400"
 xmlns:fx="http://javafx.com/fxml/1">
 <!-- Rexx buttonClicked callback -->
 <fx:script source="fxml_01_controller.rex" />

 <children>
 <Button fx:id="idButton1" layoutX="170.0" layoutY="89.0"
 onAction="slotDir=arg(arg()); call buttonClicked slotDir;"
 text="Click Me!" textFill="GREEN" />

 <Label fx:id="idLabel1" alignment="CENTER" contentDisplay="CENTER"
 layoutX="76.0" layoutY="138.0"
 minHeight="16" minWidth="49"
 prefHeight="16.0" prefWidth="248.0"
 textFill="GREEN" />
 </children>
</AnchorPane>

2018-03-26 Anatomy of a GUI 20

GUI Without Synchronisation Needs, 2c

::routine buttonClicked public
 slotDir=arg(arg()) -- note: last argument is the slotDir argument from BSF4ooRexx
 now=.dateTime~new -- time of invocation
 say now": arrived in routine 'buttonClicked' ..."

 /* @get(idLabel1) */
 say '... current value of label='pp(idLabel1~getText)
 idLabel1~text="Clicked at:" now -- set text property
 say '... new value of label='pp(idLabel1~getText)
 say

2018-03-26 Anatomy of a GUI 21

Updates to GUI From Another Thread, 1

● Possible to have Rexx threads in parallel
– Long running operations

– Need to give user feedback about progress

– Desire to use the GUI to inform the user

– Updating a GUI element from a Rexx thread
● Hangs the GUI and as a result
● Hangs the application for the user

– Proper way
● Inform the GUI to call back on the "GUI Thread" later
● Depends on the GUI system one uses

2018-03-26 Anatomy of a GUI 22

Updates to GUI From Another Thread, 2

● JavaFX
– Own GUI mangagement

– "GUI Thread" dubbed "JavaFX Application Thread"
● Too long of a term

– "javafx.application.Platform"
● Class method runLater(Runnable)
● Allows to have the Runnable code executed on the "GUI

Thread" later

● Students, even skilled and informed were not
able to properly use this class
– Need to find a more "human centric" solution

2018-03-26 Anatomy of a GUI 23

Updates to GUI From Another Thread, 3

● BSF4ooRexx
– Class FXGuiThread methods

● IsGuiThread
– Returns .tru/.false

● runLater(GUI_object, message, …)
– Returns GUIMessage object

● runLaterLatest(GUI_object, message, …)
– Returns GUIMessage object

– Class GUIMessage
● Modelled after ooRexx class Message

– Can directly use its documentation

● Possible to wait on message to have executed

2018-03-26 Anatomy of a GUI 24

Updates to GUI From Another Thread, 4

● samples/JavaFX/fxml_06
– GUI progress bar sample

– GUI progress indicator gets updated from a worker
Rexx thread

– As the user may interrupt the Rexx thread at any
time via the GUI the worker thread needs to learn
about it

● Need to create a communication protocol!
● Cf. class Action in fxml_pb_controller.rex
● Communication via Rexx can be done without problems

between the "GUI Thread" and the Rexx worker thread

2018-03-26 Anatomy of a GUI 25

Updates From Rexx Worker Thread, 1

::requires "BSF.CLS"

::class Worker public

::method go
 use arg clzAction -- get class object

 reply -- return to caller, keep working on a separate thread
 fxml=.my.app~fxml_pb.fxml -- get the corresponding FXML Rexx directory
 pb =fxml~idProgressBar
 lblCurrent=fxml~idLabelCurrent

 do i=1 to 100 while clzAction~state="running"
 -- update GUI controls on the "JavaFX Application Thread"
 d=box("Double",i/100)
 .FXGuiThread~runLaterLatest(pb, "setProgress", "individual", d)
 .FXGuiThread~runLaterLatest(lblCurrent, "setText", "indiv" , i "%")

 -- instead of sleeping, do the real work here! <-- <-- <--
 call SysSleep 0.01 -- sleep 1/100 of a second
 end
 -- we need to send the message on the "JavaFX Application Thread"
 msg=.FXGuiThread~runLater(clzAction, "setIdle")
 res=msg~result -- this blocks until message was executed

2018-03-26 Anatomy of a GUI 26

Updates From Rexx Worker Thread, 2

2018-03-26 Anatomy of a GUI 27

Roundup and Outlook

● Creating cross-operating system GUIs easy
● Possible problem

– Interacting with GUI element from a non "GUI
Thread"

● Hangs the GUI, hangs the user interface!

– Solution for JavaFX applications
● Rexx class FXGuiThread
● Easy to use
● Makes it easy to create bullet-proof Rexx-GUI

applications!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

