
The New BSF4ooRexx 6.00
Rony G. Flatscher (Rony.Flatscher@wu.ac.at), WU Vienna

"The 2018 International Rexx Symposium", Aruba, Dutch West Indies
March  25th – 29th, 2018

Abstract.  BSF4ooRexx is a Java bridge for the dynamic scripting language ooRexx. Version
6.00 increases the required level of Java from Java 1.4 to Java 1.6/6.0 and gets a totally
rewritten reflection engine in two versions that enables it to also work efficiently with the
module  based  versions  of  Java,  introduced  with  Java  9  in  the  fall  2017.  This  article
describes the most important changes to  BSF4ooRexx since the 2017 International Rexx
Symposium planned to be eventually released as version 6.00.

1 Introduction
BSF4ooRexx,  the  "Bean  Scripting  Framework  for  ooRexx",  is  a  Java  bridge  for
ooRexx, allowing ooRexx to interact with Java classes and Java objects, as if they
were ooRexx classes and ooRexx objects by requiring the supplied ooRexx package
BSF.CLS.  As a result  ooRexx programmers can simply send ooRexx messages to
Java objects that will cause the appropriate Java methods to be invoked reflectively
by BSF4ooRexx. 

Since the first proof-of-concept implementation of a Rexx-to-Java bridge in 2000
many  features  got  added  and  taking  advantage  of  the  powerful  native  APIs
introduced with ooRexx 4.0 even wrapping ooRexx objects in Java objects became
possible. The resulting  BSF4ooRexx package has enabled ooRexx programmers to
implement Java interface classes with ooRexx classes.1

Over the years BSF4ooRexx has become a complete bi-directional bridge that allows
ooRexx to fully exploit Java and at the same time allows Java programmers to fully
interact and exploit ooRexx, making it easy to add ooRexx as a scripting language
to Java applications.

1 The BSF4ooRexx external function BsfCreateRexxProxy() allows Rexx objects to be wrapped as
Java objects. Java method invocations on the wrapped Java object will cause ooRexx messages to
be sent to the wrapped ooRexx object transparently. 

The New BSF4ooRexx 6.00 1/12



2 New Properties and Features in BSF4ooRexx 6.00
BSF4ooRexx version number "6.00"2 indicates that it requires at least Java version
1.6, a.k.a. "Java 6", as the minimum Java version, whereas BSF4ooRexx 4.x required
minimally Java version 1.4.3  

2.1 New Java Version Information
The Java versioning scheme started out with Java 1.0 and each subsequent version
was defined by adding 0.1 to it, yielding 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 and 1.8 over
the course of twenty years. The versions 1.5, 1.6, 1.7 and 1.8 were later renamed to
5, 6, 7 and 8 respectively. Starting with the Java version released in the fall of 2017
a new versioning scheme took effect  by  naming it  9  and in  the future version
numbers will be increased by adding 1 to the previous one.4

The ooRexx package  BSF.CLS now defines new entries in the Rexx directory that
Rexx programmers can fetch with the environment symbol .bsf4rexx:

• entry  named  "JAVA.VERSION":  this  will  return the  current  Java  version as
reported by Java5, e.g. the string "1.8.0_162".

• entry named  "JAVA.MAJOR.VERSION":  this will return the string  "6" for Java
1.6,  "7" for Java 1.7,  "8" for Java 1.8,  "9" for Java 9, "10" for Java 10 and so
forth. 

• entry  named  "JAVA.MINOR.VERSION":  this  will  return the string  "0_162" for
Java version "1.8.0_162". 

2 The external  Rexx function  BSFVersion() will  report  in the first  returned word the  current
version number as  Jvv.YYYYMMDD:  "J" indicates the minimum Java version, the  "vv" number
represents the version number followed by a dot and the sorted date of that particular release.
This encoding makes it easy for Rexx programmers to extract the minimum Java version, the
current  BSF4ooRexx bridge  version  and  the  date  of  that  particular  release.  Whenever  the
minimum required Java version "J" changes the version number "vv" will be reset to "00".
If requiring the package  BSF.CLS  then the environment symbol  .bsf4rexx (a Rexx directory)
stores  the  version  number  with  the  index  name  "VERSION".  Hence  .bsf4rexx~version will
return the current BSF4ooRexx version number in the form Jvv.YYYYMMDD. 

3 Java 1.4 got introduced in 2002,  Java 1.6 in December 2006, more than a decade ago  [1].  As
organisations and companies tend to run their application in stable environments it may be the
case that there are still Java 1.6/6.0 deployments in the field for which the ooRexx-Java bridge
should keep working. 

4 In 2017 the OpenJDK community decided to create a new Java version from Java 9 on every six
months, cf. [2]. 

5 The  current  Java  version  can  be  retrieved  in  Java  with  the  following  Java  statement:
java.lang.System.getProperty("java.version"). 

The New BSF4ooRexx 6.00 2/12



2.2 Masking Name Change from "MACOSX" to "DARWIN"
The ooRexx package BSF.CLS defines four operating system name releated entries
in the ooRexx directory that Rexx programmers can fetch with the environment
symbol .bsf4rexx: 

• entry named "OPSYS": uppercased name of the operating system as the PARSE
UPPER  SOURCE keyword  statement  returns  ,  e.g.  "LINUX",  "MACOSX",
"WINDOWSNT",

• entry named  "OPSYS1": the first (uppercase) letter of the operating system
name, e.g. "L", "M", "W",

• entry  named  "OPSYS2":  the  first  two  (uppercase)  letters  of  the  operating
system name, e.g. "LI", "MA", "WI"

• entry  named  "OPSYS3":  the  first  three  (uppercase)  letter  of  the  operating
system name. e.g. "LIN", "MAC", "WIN".

These entries are meant to help BSF4ooRexx programmers, who need to determine
the operating system under which their Rexx programs get executed.6 

ooRexx used to report the Apple operating system as  "MACOSX" but in ooRexx 5.0
beta that name got changed to the one returned by the operating system itself, i.e.
"DARWIN". To allow  BSF4ooRexx programs to continue to run unchanged this name
change will be masked by keeping the "MACOSX", "M", "MA" and "MAC" values for the
above  four  entries,  although  the  ooRexx  5.0  PARSE SOURCE keyword  statement
returns "DARWIN".7 

2.3 Adjusting Java 9 Support for MacOS
Apple's Java 1.6/6.0 runtime environment was installed with proprietary classes
that support the integration with the MacOS desktop environment and concluded
the Apple Java support with that version. Oracle's Java versions 1.7/7 and 1.8/8
would rely on Apple's Java 1.6/6.0 to be present for desktop integration. 

Starting with Java 9 access to Apple specific8 classes is not allowed anymore. The
6 For  example  Windows  and  Unix  file  systems  usually  differ  in  their  path  and  file  separator

characters and how a fully qualified path has to be assembled, such that it becomes important to
learn the operating system the Rexx scripts is currently using in order to correctly build paths.

7 The full  operating system information can be retrieved using the ooRexx SysUtility function
SysVersion().

8 Examples of Apple specific support in their Java runtime environment are for instance the Java
class "com.apple.eawt.Application" or the property "apple.laf.useScreenMenuBar". 

The New BSF4ooRexx 6.00 3/12



BSF4ooRexx support  for  MacOS  was  adjusted  in  the  BSF.CLS and  the  UNO.CLS
packages accordingly and makes sure that starting with Java 9 on Apple the new
Java alternatives for operating system independent desktop integration gets used
like the new and portable Java 9 class "java.awt.Taskbar".

2.4 Slot Argument Now an Instance of Type Slot.Argument
Whenever  the  Java  side  causes  a  message  to  be  sent  to  a  Rexx  object,  the
BSF4ooRexx infrastructure will  append a slot  argument of  type  Directory,  which
contains entries that may be helpful for the Rexx programmer. In order to allow
Rexx  programs to determine that an argument is a slot argument, the new type
Slot.Argument9, currently10 a subclass of Directory, will be used for storing the Java
context information of the message. This way Rexx programmers can easily and
unambiguosly determine  whether an argument is such a slot argument, e.g., with
"if someArg~isA(.Slot.Argument) then …". 

2.5 New Implementations of the Reflection Invocation Strategies
BSF4ooRexx uses  Java  reflection  in  order  to  find  Java  constructors,  fields  and
methods, it needs to invoke on behalf of Rexx programs. Since its inception the
Java  language  defines  reflection  classes  in  the  Java  package  named
java.lang.reflect.  With  the  introduction  of  Java  1.7/7  the  new  Java  package
java.lang.invoke got  introduced  into  the  Java  language  allowing an alternative
means of reflection in Java which has since been extended. 

As the baseline of BSF4ooRexx 6.0 is Java 1.6/6.0 it is still necessary to use the Java
package java.lang.reflect, which can be used on Java 1.7/711, 1.8/8 and higher as
well. Applying the reflection via the Java package java.lang.invoke is only possible
starting with Java 1.7/7.  BSF4ooRexx by default  uses the  java.lang.invoke based
reflection engine if the current Java version is 1.8/8 or higher.

Java  9  changed  the  rules  for  accessibility  with  the  introduction  of  the  module
system, such that there may be reflective accessibility invocation problems that
9 This follows a suggestion by Jon Wolfers at the International Rexx Symposium 2017.
10 Once  ooRexx  5.0  is  released  it  is  envisioned  that  the  new  ooRexx  class  StringTable gets

subclassed instead of Directory. 
11 Although Java 1.7/7 introduced the new java.lang.invoke package, its implementation in the

Java 1.7/7 runtime is not correct in a few Java classes (e.g. at runtime the hasNext() method will
cause a java.lang.IllegalAccessException in: "class java.util.AbstractList$Itr.public
boolean java.util.AbstractList$Itr.hasNext()") such that it is important for BSF4ooRexx to
apply the java.lang.reflect package instead for Java 1.7/7.

The New BSF4ooRexx 6.00 4/12



cannot  be  easily  overcome  anymore.12 Taking  advantage  of  the  classes  in
java.lang.invoke makes it possible to efficiently reflect and invoke at runtime on
Java 9 too. 

The  BSF4ooRexx Java  package  org.rexxla.bsf.engines.rexx now  includes  two
different  classes  for  reflective  invocations  on  behalf  of  Rexx  programs.  One
employs the  java.lang.reflect package (RexxReflectJava6) and one employs the
java.lang.invoke package (RexxReflectJava7). By default  RexxReflectJava7 will be
used starting with Java 1.8/8.13

2.6 Allowing DO...OVER Loops on all Kinds of Java Collections
The  collection  classes  that  the  Java  runtime  environments  supply  may  have
different kind of means to iterate over the collected objects. With BSF4ooRexx 6.00
any  object  from  a  Java  class  implementing  one  of  the  following  Java  interface
classes can be used in ooRexx do...over loops:

• java.lang.Enum14

• java.lang.Iterable

• java.util.Collection

• java.util.Enumeration

• java.util.Iterator

• java.util.Map

There  are  two  ooRexx  proxy  methods  that  get  added  to  such  proxy  objects:
makeArray and supplier, which both allow iterating over collection objects on Rexx.

The ooRexx  do...over loop mechanism will  send the  makeArray message to  the
collection object and iterate over the elements in the returned Rexx array. This way
it becomes possible to iterate over any Java collection with the ooRexx semantics.
12 Starting with Java 9 it may be the case that classes from modules that are not exported to classes

that employ reflection upon them, cannot be interacted with. E.g. it would not be possible to
overrule missing accessibility rights by invoking the  setAccessible(true) method on a non-
exported, reflected object! 

13 For a transitional period from Java 9 up, the method setAccessible(true) will be tolerated, but
appropriate runtime warnings will get issued. Using  BSF4ooRexx new reflection infrastructure
will  cause these warnings to  be issued,  however,  once the Java runtime will  create runtime
exceptions  the  implemented  BSF4ooRexx reflective  algorithm  will  react  accordingly,  making
sure that accessible superclasses will get used to successfully invoke methods reflectively.

14 The  Java  class  java.lang.Enum gets  used  as  the  base  class  for  any  enum type  by  the  Java
compiler. An Enum  type serves among other things as a collection of  its enum values.

The New BSF4ooRexx 6.00 5/12



The  new  sample  program  "samples/1-070_demoDoOver.rxj" in  the  BSF4ooRexx
installation package demonstrates this new feature.

2.7 New Source Options in BsfCreateRexxProxy()
The  external  BSF4ooRexx function  BsfCreateRexxProxy(rexxObject,… ) allows  a
Rexx  object  to  be  boxed  (wrapped)  as  a  Java  object.  Methods  invoked  by  Java
programs in such a proxy object will cause a Rexx message by the name of the
invoked Java method to be sent synchroneously to its contained (boxed) ooRexx
object. 

However, if the first argument rexxObject is of type string, method, or – new in 6.00
– of type routine, array then it is by default taken as the Rexx code that should get
executed whenever a message gets received from Java.15 The semantics depend on
the type of the first argument:

• string,  method, or an array (new in version 6.00): represents the code of an
unknown method that runs upon each received message; the code needs to
fetch the supplied arguments in the unknown method sequence: messageName,
messagArgs (an array of arguments, if any),

• routine: the code will be invoked using call, supplying the arguments in the
unknown method sequence: messageName, messagArgs (an array of arguments, if
any),

If it is intended to box (wrap) the first Rexx argument of type string, array, method,
or routine as is, then in this particular case that the first argument's type is string,
method, array, or routine one needs to supply the string argument "REXXOBJECT" as
the  third  argument  to  the  BsfCreateRexxProxy()  external  Rexx  function  call.
Supplying  such  a  boxed  (wrapped)  Rexx  object  to  Java  will  allow  Java
programmers to interact directly with the Rexx object using Rexx messages.16

2.8 Improving Error Information for FXML Invoked Rexx Code 
The BSF4ooRexx RexxScriptEngine implementation [7] allows ooRexx to be used as a
normal Java scripting language using Java's scripting framework as implemented
in the javax.script package and introduced with version 1.6/6.0 in 2006. 

15 In this scenario the Rexx program  "BSF_OnTheFly.cls" gets employed in order to create the
appropriate Rexx object.

16 Cf.  the  Javadocs  documenting  the  class  org.rexxla.bsf.engines.rexx.RexxProxy and  its
methods starting with the name sendMessage.

The New BSF4ooRexx 6.00 6/12



One area where the Java scripting framework gets deployed is JavaFX. It makes it
possible to define Java scripting programming languages in  FXML user interface
definition files that should be employed for invoking programs and event handler
code [8]. Unfortunately, as of Java 9 JavaFX does not supply the file name which is
the source of the code that the receiving script engine gets for execution.17 In the
case of a runtime error in the executed script, the script engine is therefore not
able to supply the name of the script file that caused a runtime error, making it
very difficult and cumbersome to debug such script programs. 

The RexxScriptEngine implementation got enhanced to supply at least the name of
the hosting FXML file for which the script engine executes the submitted script code
if there is no  "javax.script.filename" entry in the engine scope  Bindings in the
ScriptContext.18 This way Rexx programmers gain at least the ability to identify the
hosting file that invoked the Rexx script code. 

2.9 "Shebang Line" in all BSF4ooRexx Rexx Programs
A "shebang line" [3] in a script starts with the character sequence #! (the number
sign followed by an exclamation mark) followed by a program that is supposed to
execute  the  script  file  containing  that  shebang.  If  such  a  script  file  gets  the
execution attribute set, it can be executed by just supplying the script file name.
The operating system will extract the program from the shebang line that is to be
used to execute the script.

In  order  to  take  advantage  of  this  Unix  mechanism  for  the  BSF4ooRexx Rexx
programs, all Rexx scripts were changed to define the shebang line as:19

#!/usr/bin/env rexx

This will cause, with the help of the Unix env program, the Rexx interpreter rexx to
be located in one of  the directories that the  PATH environment variable defines
which then gets used for executing the script. 

17 The class javafx.fxml.FXMLLoader does not supply the entry "javax.script.filename" in the
engine scope Bindings in the ScriptContext as of Java 9.

18 RexxScriptEngine uses the location URL attribute from the ScriptContext for this purpose.
19 The shebang line must be the first line and the line end character must be the single character

LF (linefeed:  "0A"x),  not the  Windows  end-of-line  sequence  CR-LF (carriage  return-linefeed:
"0d0a"x)! 

The New BSF4ooRexx 6.00 7/12



2.10 New External Rexx Function "bsfTestPing()"
To aid in the development and the profiling of the  BSF4ooRexx framework a new
external Rexx function "bsfTestPing([numberCallsToJava])" got created:

• with  no  argument  given,  this  function  immediately  returns  to  the  Rexx
program,

• if a number is given as a single argument it specifies the number of times a
Java test  method, which immediately returns to  C++,  should be called via
JNI20.

This way it becomes possible to measure the overhead of calling an external Rexx
function from Rexx, but also to measure the overhead of calling a Java method
from native code.

2.11 New BSF()-Subfunction "testPing"
The external Rexx function  BSF() was extended with a new subfunction named
"testPing". It is meant for measuring round trip times from Java to native C/C++
code and from Java to Rexx and always returns .nil. Its syntax is:

• BSF("testPing"[,repetitions=1[,rexxObject,messageName]])

repetitions determines  the  number  of  times  a  native  C++  function,  that
immediately returns, gets called from Java. It defaults to 1.

If the third argument is given, then it denotes a rexxObject to which the message
named messageName gets sent repetitions times from Java (via native C/C++ code to
the ooRexx interpreter and back). 

This way it becomes possible to measure the overhead of calling native code from
Java and the overhead of sending messages to Rexx objects from Java.

2.12 Reworking Package21 BSF.CLS 
The ooRexx package BSF.CLS camouflages Java as ooRexx and is used to take full
advantage  of  the  Java  bridge.  BSF.CLS formerly  contained  numerous  expensive
Rexx interpret keyword statements. With the advent of the routine class in ooRexx
an  alternative  to  dynamically  create  and  invoke  Rexx  routines  has  become
20 JNI is the acronym for Java Native Interface which allows direct interactions between C/C++

and Java.
21 In ooRexx 5.0 the term "package" denotes a file that contains Rexx code and directives. The Rexx

code before the first directive in this context is named "prolog". 

The New BSF4ooRexx 6.00 8/12



available which compared to the  interpret keyword statements can be invoked
faster. 

All  interpret keyword statements got replaced by using  routine objects instead
and  in  the  process  caching  them.  In  addition  the  external  (BSF4ooRexx)  Rexx
functions get cached as ooRexx routine objects as well! 

As  a  result  of  this  work  the  invocation  of  BSF-related  routines  on  ooRexx  4.2
became all in all about twenty times faster compared to the previous version of
BSF.CLS!

2.13 New "bsf.compile()" Routine in BSF.CLS
ooRexx 5.0 new  resource directive allows any text to become part of an ooRexx
package  (program)  including  programs  in  any  other  programming  language.22

Therefore it may be helpful at times, if Rexx programmers become able to define
Java  programs  that  get  compiled  dynamically  at  runtime.  The  new  BSF4ooRexx
sample "samples/9-030_compileJavaClassAndUseIt.rxj" demonstrates this ability.

The syntax of the new bsf.compile23 routine is:

• bsf.compile(fullJavaClassName, javaSourceCode)

This routine returns an ooRexx proxy class for the created Java class object which
understands the new message for creating instances.

fullJavaClassName is the fully qualified name of the created Java class that may
include package names.  javaSourceCode is either a  string or an  array of strings
containing the Java code to compile. 

2.14 Supporting GUI-Thread Interaction from Non-GUI-Thread
Java's  awt/swing and  JavaFX GUI (acronym for: "graphical user interface") classes
allow direct interaction with GUI objects only from its GUI thread, otherwise the
GUI may hang or exhibit erroneous behaviour. If Rexx programs wish to interact
with GUI objects from a different thread then it becomes necessary to use Java's
awt/swing or  JavaFX means for making sure that Rexx interaction with Java GUI

22 ooRexx  will  allow  access  to  any  resource direcitve  value  via  the  environment  symbol
.resources,  a Rexx  directory whose indices are the names of  the resources defined on the
resource directive.

23 The current implementation uses the opensource Janino compiler, cf. [4]. 

The New BSF4ooRexx 6.00 9/12



objects occur on the GUI thread24. 

It is quite easy to employ the necessary Java methods from Rexx to make sure that
Rexx code will be executed on the GUI thread such that it is safe for it to interact
with the GUI objects for those in the know. In real world scenarios it has turned out
to be quite difficult to employ the Java infrastructure for proper GUI-interaction
for  Rexx  programmers,  resulting  in  error-prone  GUI  programs  making  it  very
time-consuming to debug such scenarios.25 

To  allow  an  easy  to  be  applied  solution  for  ooRexx  programmers  two  ooRexx
classes got created that allow updating any JavaFX GUI from a non-GUI thread
from Rexx in a way that looks natural and therefore easy to ooRexx programmers.
The  solution  takes  advantage  of  the  ooRexx  message  based  architecture  and
defines two public classes in BSF.CLS:

• FXGuiThread, used to later dispatch messages on the GUI thread, supplying
the  following class methods for this purpose:

◦ isGuiThread:  returns  .true,  if  current  thread is  the  JavaFX GUI  thread
(safe to interact directly with GUI objects), .false else,

◦ runLater(target,messageName[,"I"|"A",arg…])26:  creates  and  queues  a
GUIMessage object that sends messageName with the supplied arguments to
the target object on the JavaFX GUI thread later that gets returned to the
caller, 

◦ runLaterLatest(target,messageName[,I"|"A",arg…]):  will  remove  any
queued GUIMessage objects directed at  target with the same messageName
before  creating  and  queuing  a  new  GUIMessage object  as  runLater()
above.

• GUIMessage: this class is modelled after the ooRexx  Message class, such that
the reader can consult the ooRexx reference (rexxref.pdf) for the documen-
tation of the following methods and attributes:

◦ arguments

24 For awt/swing GUIs one can use the static utility method invokeLater(java.lang.Runnable) in
the class  javax.swing.SwingUtilities For JavaFX GUIs one can use the static utility method
runLater(java.lang.Runnable) in the class javafx.application.Platform. 

25 These observations were gained with students at WU [5], who created ooRexx applications with
JavaFX together with the need to update the JavaFX GUI off a Rexx thread.

26 The arguments are exactly the same as the ones needed to create an ooRexx message object. 

The New BSF4ooRexx 6.00 10/12



◦ completed

◦ hasArguments

◦ hasError

◦ hasResult

◦ errorCondition

◦ messageName

◦ result

◦ target

Although  the  target object  usually  will  be  some  JavaFX GUI  object,  this  is  not
necessary. Alternatively one could instead send any ooRexx message to any ooRexx
object later, making sure that it will be dispatched on the GUI thread where it is
safe to directly interact with the GUI objects.

3 Roundup and Outlook
This article introduced new features to the  BSF4ooRexx external function package
that  bridges ooRexx and Java.  To indicate  the minimum Java version that  gets
supported the major version number got changed to 6 to indicate that Java version
1.6/6.0 is required at least.

The most significant change has to do with the reflection part of the package which
got totally rewritten and for which two versions exist: one for Java 1.6/6 and 1.7/7
employing  java.lang.reflect,  and  one  for  Java  1.8/8  and  up  employing  the
java.lang.invoke by default.

It is planned that the ability for ooRexx programmers to easily update JavaFX GUIs
from a non-GUI thread (using the classes  FXGuiThread and  GUIMessage defined in
the  package  BSF.CLS)  gets  ported  to  awt/swing  GUIs  adding  perhaps  a  class
AwtGUIThread with the same class methods and behavior as implemented in the
FXGuitThread class. 

It is planned that once ooRexx 5.0 gets released,  BSF4ooRexx will get released as
well  supporting ooRexx 4.1  and later.  That  released version of  BSF4ooRexx then
should be immediately reworked to exploit some of the new features introduced
with  ooRexx  5.0  like  the  package  local directory,  but  also  the  new  and  faster
StringTable class instead of the  Directory class, if backward compatibility can be
maintained. 

The New BSF4ooRexx 6.00 11/12



4 References
[1] "Java version history", Wikipedia (as of 2018-03-01): 

https://en.wikipedia.org/wiki/Java_version_history  

[2] "Open JDK Homepage" (as of 2018-03-01): https://openjdk.java.net/  

[3] "Shebang", Wikipedia (as of 2018-03-01): 

https://en.wikipedia.org/wiki/Shebang_(Unix) 

[4] "Janino Homepage" (as of 2018-03-01): http://janino-

compiler.github.io/janino/ 

[5] "WU – Wirtschaftsuniversität Wien/Vienna University of Economics and 

Business" (as of 2018-03-01): https://www.wu.ac.at/ 

[6] Javadocs for the Java package javax.script (as of 2018-03-01): 

https://docs.oracle.com/javase/8/docs/api/javax/script/package-summary.html 

[7] Flatscher R.G.: "'RexxScript' – Rexx Scripts Hosted and Evaluated by Java 

(Package javax.script)", in: Proceedings of the “The 2017 International Rexx

Symposium”, Amsterdam, The Netherlands, April 9th - 12th 2017. URL (as of 

2018-03-01): 

http://www.rexxla.org/events/2017/presentations/201704-RexxScript-Article.pdf 

[8] Flatscher R.G.: "JavaFX for ooRexx – Creating Powerful Portable GUIs for 

ooRexx", in: Proceedings of the “The 2017 International Rexx Symposium”, 

Amsterdam, The Netherlands, April 9th - 12th 2017. URL (as of 2018-03-01): 

http://www.rexxla.org/events/2017/presentations/201704-RexxScript-Article.pdf 

[9] Sourceforge homepage BSF4ooRexx (acronym for "bean scripting framework 

– BSF – for ooRexx"), an ooRexx and Java bridge (as of 2018-03-01): 

https://sourceforge.net/projects/bsf4oorex 

[10] Sourceforge homepage ooRexx ("open object-oriented Rexx"), a dynamically 

typed scripting language (as of 2018-03-01): 
http://www.rexxla.org/events/2017/presentations/201711-ooRexx-JavaFX-Article.pdf 

[11] Download page for ooRexx 5.0 beta (as of 2018-03-01): 

https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0beta/ 

The New BSF4ooRexx 6.00 12/12


	1 Introduction
	2 New Properties and Features in BSF4ooRexx 6.00
	2.1 New Java Version Information
	2.2 Masking Name Change from "MACOSX" to "DARWIN"
	2.3 Adjusting Java 9 Support for MacOS
	2.4 Slot Argument Now an Instance of Type Slot.Argument
	2.5 New Implementations of the Reflection Invocation Strategies
	2.6 Allowing DO...OVER Loops on all Kinds of Java Collections
	2.7 New Source Options in BsfCreateRexxProxy()
	2.8 Improving Error Information for FXML Invoked Rexx Code
	2.9 "Shebang Line" in all BSF4ooRexx Rexx Programs
	2.10 New External Rexx Function "bsfTestPing()"
	2.11 New BSF()-Subfunction "testPing"
	2.12 Reworking Package21 BSF.CLS
	2.13 New "bsf.compile()" Routine in BSF.CLS
	2.14 Supporting GUI-Thread Interaction from Non-GUI-Thread

	3 Roundup and Outlook
	4 References
	[1] "Java version history", Wikipedia (as of 2018-03-01): https://en.wikipedia.org/wiki/Java_version_history
	[2] "Open JDK Homepage" (as of 2018-03-01): https://openjdk.java.net/
	[3] "Shebang", Wikipedia (as of 2018-03-01): https://en.wikipedia.org/wiki/Shebang_(Unix)
	[4] "Janino Homepage" (as of 2018-03-01): http://janino-compiler.github.io/janino/
	[5] "WU – Wirtschaftsuniversität Wien/Vienna University of Economics and Business" (as of 2018-03-01): https://www.wu.ac.at/
	[6] Javadocs for the Java package javax.script (as of 2018-03-01): https://docs.oracle.com/javase/8/docs/api/javax/script/package-summary.html
	[7] Flatscher R.G.: "'RexxScript' – Rexx Scripts Hosted and Evaluated by Java (Package javax.script)", in: Proceedings of the “The 2017 International Rexx Symposium”, Amsterdam, The Netherlands, April 9th - 12th 2017. URL (as of 2018-03-01): http://www.rexxla.org/events/2017/presentations/201704-RexxScript-Article.pdf
	[8] Flatscher R.G.: "JavaFX for ooRexx – Creating Powerful Portable GUIs for ooRexx", in: Proceedings of the “The 2017 International Rexx Symposium”, Amsterdam, The Netherlands, April 9th - 12th 2017. URL (as of 2018-03-01): http://www.rexxla.org/events/2017/presentations/201704-RexxScript-Article.pdf
	[9] Sourceforge homepage BSF4ooRexx (acronym for "bean scripting framework – BSF – for ooRexx"), an ooRexx and Java bridge (as of 2018-03-01): https://sourceforge.net/projects/bsf4oorex
	[10] Sourceforge homepage ooRexx ("open object-oriented Rexx"), a dynamically typed scripting language (as of 2018-03-01): http://www.rexxla.org/events/2017/presentations/201711-ooRexx-JavaFX-Article.pdf
	[11] Download page for ooRexx 5.0 beta (as of 2018-03-01): https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0beta/

