

RexxLA Symposium 2018

Redirecting I/O for Commands to an External
Environment

Gil Barmwater

Overview

● Definitions - What is I/O Redirection?
● The Development Journey
● The Package Implementation
● Summary

Definitions

● What are we talking about?
– At a command prompt, you can e.g. send the

output of a command to a file rather than the
screen

– In Windows you might issue:
● Dir *.rex > rexfiles.txt

– You can also redirect the input to a command:
● More < rexfiles.txt

– Error output can also be redirected

– And the option to append to a file is available

Definitions(2)

● Can't we do that now?
– Yes! Rexx will send any clauses that are just

expressions to an External Environment as a
character string (c.f. TRL2, Section 6)

– So you can issue a command with I/O
redirection from Rexx and then read the
resulting file to process the command output

– There is also the RXQUEUE filter that can make
this easier

– But it doesn't look much like Rexx!

Definitions(3)

● The ANSI Standard addresses this issue
– Additional sub-keywords are added to the

ADDRESS instruction to allow for I/O
redirection in a more readable syntax; also
allows for redirection to/from compound
variables (stems) as well as files

– This obviously makes processing a command's
input/output much more convenient

– REGINA has implemented this capability but
ooRexx has not

Definitions(4)

● Overview of the syntax
– The sub-keyword WITH is added following the

command string (if present) and one or more
“connection” definitions follow it

– A “connection” defines one of the three I/O
streams and specifies its redirection

– Following the name of the stream – INPUT,
OUTPUT or ERROR – is another sub-keyword
that defines the type of the redirection target:
STEM or STREAM

Definitions(5)

● Overview of the syntax (cont.)
– For the INPUT stream, the last word is the

“name” of the stream or stem

– For the OUTPUT and ERROR streams, the
“name” can be preceded by another sub-
keyword, either REPLACE or APPEND

– Whew!

● An example might help:
– address cmd "curl -s" url with output stem s.

Development

● Goal
– Eventually: develop and test the code needed to

make this functionality available in ooRexx;
i.e. implement RFE 4

– Initially: to understand the mechanism used to
execute external commands and then to
determine how their I/O might be redirected

Development(2)

● Requirements
– Become comfortable developing code in C++,

specifically as used in the ooRexx interpreter

– Be able to build a version of the ooRexx
interpreter so that modifications can be tested

Development(3)

● Process
– Tried looking at the source code for the

interpreter to see how the ADDRESS keyword
instruction is implemented

● Little success – there is no “roadmap” for the
structure of the code; a high-level design
document really should be written

● Stumbled on a Windows API called
CreateProcess which looked promising

– Read the MS documentation on CreateProcess
● Found a link “Creating a Child Process with

Redirected Input and Output”

Development(4)

● Process (cont.)
– That link had a code example showing how to

do the I/O redirection!

– Began to design a “proof of concept” code
implementation that would incorporate the
technique shown in the example

● Structure of the design
– The design should allow any combination of the

three streams to be redirected (or none of
them)

Development(5)

● Structure of the design (cont.)
– The design should allow either stems or arrays

to be specified as the “target” of the
redirection

– Processing was divided into 1) an ooRexx
program that handled the input arguments and
2) a native (C++) routine that implemented the
CreateProcess API invocation

Development(6)

● Structure of the design (cont.)
– The interface to the ooRexx program consisted

of up to 5 arguments: the environment name,
the command string to be executed, and
(optionally) the objects to be the “target” of the
redirection in the order Input, Output and Error

– The interface to the native routine consisted of
exactly 3 arguments: the environment name,
the command string to be executed, and an
ooRexx directory

● This avoided learning how to do “optional” args!

Development(7)

● Design Rationale
– As the C++ code would be much more complex

than anything I had previously written, keeping
it limited to just what had to be done to access
the Windows APIs seemed prudent

– The Rexx program would handle the processing
of the arguments and transforming the stream
data from/to a common format – arrays

– The ooRexx C++ APIs have good support for
both arrays and directories

Implementation

● Develop the Rexx program first
– Write a “stub” in Rexx to stand in for the C++

routine to be added later

– Allow the first arg, the environment name, to be
omitted and default to the value returned by
the address() BIF

● In Windows, this will be CMD on my system as I
have no other environments defined

– The second argument is simply a string to be
passed to the CreateProcess API

Implementation(2)

● Develop the Rexx program first (cont)
– The third, fourth and fifth arguments are optional

and are the objects that are the targets for the
redirection of the Input, Output and Error
streams respectively

– If the Input object is a stem, create an array and
put the stem items in it in order

– If the Output or Error object is specified, create
an empty array to hold the resulting data

Implementation(3)

● Develop the Rexx program first (cont)
– Create an empty directory and add entries

named INPUT, OUTPUT and/or ERROR with
the associated arrays if the corresponding
argument was specified

– Call the C++ routine (or stub) passing the three
arguments

– Process the Output and/or Error array data,
converting it, if necessary, to the stem
object(s) that were specified

Implementation(4)

● Develop the Rexx program first (cont)
– Write a test program to run the package with

various combinations of arguments

● Develop the native (C++) routine next
– Use the same approach that I use when writing

Rexx programs: a small bit at a time

– Make use of the “iostream” class and the “cout”
object to do the equivalent of Say in Rexx

Implementation(5)

● Main parts of the native routine
– Determine which of the streams, if any, are to

be redirected

– Create the “pipes” that will connect to the new
process

– Create the new process that will execute the
command

– If the input stream is redirected, get the data
from the Rexx array and write it to the pipe

– Wait for the new process to complete

Implementation(6)

● Main parts of the native routine (cont)
– If the output and/or error stream is redirected,

read the data from the pipe(s) and put it into
the Rexx array(s)

– Make liberal use of “cout” statements to show
what the routine is doing!

– Make use of previously developed tools to make
the “code-build-test” cycle easier and faster

– Got it to run correctly without having to learn the
C++ debugger!

Implementation(7)

● Review the ANSI standard
– Ensure nothing I had done conflicted with what

was specified

– Realized I hadn't allowed for streams
● Easy to add by using ArrayIn and ArrayOut
● Only need to change the Rexx program

– Decide to also allow the syntax in the standard
that specified the “type” and “replace/append”

● Argument(s) now became strings as opposed to
object references

Implementation(8)

● Review the ANSI standard (cont)
– Handling STREAM [REPLACE|APPEND] name

wasn't too hard
● Create a Stream object from the name
● If Replace was specified (or defaulted to), send it

the message ~~open(write replace)~close

– Handling STEM was more difficult
● Needed to get a reference to the stem object

from the name
● The GetContextVariable(name) method will do

that if name is a stem

Implementation(9)

● Review the ANSI standard (cont)
– BUT the variable must be in the caller's scope

● If I added a native routine to do this, it would
have to be called directly from the invoking
program, not from the Rexx program I had
already written

– Major redesign was required :-(
● Divided the Rexx program into two Rexx routines:

CheckArgs and RunCommand
● Wrote another native (C++) routine that would be

called in place of the original Rexx program

Implementation(10)

● Review the ANSI standard (cont)
– Figure out how to do “optional” args

● Not as difficult as I had expected

– Have the CheckArgs routine return a directory
for each stream that had a stem “name”
specified with the “name” and a flag for
“replace/append”

– If any directories were returned, use
GetContextVariable(name) to convert name to
an object reference and send the message
~empty to it if the “replace” flag was set

Implementation(11)

● Review the ANSI standard (cont)
– Pass the references to the RunCommand

routine which would do the remainder of the
processing

– Write a lot of additional tests to make sure the
original functionality still worked and various
combinations of the new arguments did too

– Debug, tweak and optimize ad infinitum

Implementation(12)

● Final package structure
– One Requires file, ADDRWITH.REQ

– One public external routine, ADDRWITH

– One private external routine, ADD_WITH

– Four private (ooRexx) routines:
● checkArgs, which uses
● resolve
● runCommand, which uses
● repackage

Implementation(13)

● Example
– Earlier example of the ANSI standard:

address cmd "curl -s" url with output stem s.

– Using the ADDRWITH package:
call addrwith cmd, "curl -s" url, , stem s.

– Or
call addrwith , “curl -s url, , s.

Summary

● Proof of Concept complete
– Implements the redirection functionality

specified in the ANSI standard

– Extends that functionality to include using
objects as the targets of the redirection

– Does NOT implement the maintenance of the
redirection state

– Not meant as a substitute for RFE 4

Addendum

● Testing under 4.2.0 revealed issues
– Method ObjectToString sent to an an Array

returns “an Array” instead of the contents

– <iostream> causes compile errors

– Method GetContextVariable for a new stem
doesn't set the variable in the caller

● Contact information for comments and
questions:

– gil.b@windstream.net

