

 RexxLA Symposium 2019

Multi-line Strings and ooRexx:
A discussion

Gil Barmwater

Overview

● What is a “multi-line string”?
● Multi-line strings in ooRexx
● A tool to help create them
● Summary

What is a multi-line string?

● Depends on who you ask!
– Could be just a string that displays on multiple

lines:
● say “This string”.endofline”shows as 2 lines”

– More likely to be a long string that is defined on
multiple lines

● say “This string, while not that long,” -
“spans 3 lines by using the ooRexx” -
“continuation syntax.”

– For this discussion, the latter case will be what
is meant (but the former is not excluded)

Multi-line strings in ooRexx

● The previous example shows (oo)Rexx
supports strings that are defined on multiple
lines

– Must follow the rules:
● Statement continuation must be indicated
● Literals can NOT span lines

● Sometimes the “rules” make it difficult to define
the string data

– Usually when creating a string meant to be
processed by a non-Rexx program

Multi-line strings in ooRexx (2)

● An example of a partial Rexx statement to
create an SQL command:

– sql_cmd = "INSERT INTO wp_posts (",
"`ID`,",
"`post_author`,",

 "`post_date`,"
…

"VALUES(",
"'"gp.ID.1"',",
"'"gp.post_author.1"',",
"'"gp.post_date.1"',",

...

Multi-line strings in ooRexx (3)

● Other Languages
– Many implement a syntax based on Here

Documents: c.f.
https://en.wikipedia.org/wiki/Here_document

– Python has a "verbatim" string delimited by
triple quotes

– Resulting strings may contain variables and
include the end-of-line character(s)

● ooRexx can provide the functionality without
adding additional syntax to the language

https://en.wikipedia.org/wiki/Here_document

The Tool - MLString

● Based on work spanning several years
– Additions made as requirements changed

– Rewrites done as “new” features of ooRexx
discovered

● Consists of a Class file and a Native Routine
library

– Easy to use:
● Add a ::REQUIRES directive for the class file to

your program
● Ensure the .cls file and library are accessible

The Tool - MLString(2)

● Design requirements
– What does the object need to know?

● The data that will be part of of the object
● Implemented as Attributes

– What must the object be able to do?
● The methods that the object can execute
● Only job is to create a string

The Tool - MLString(3)

● The Attributes
– The “lines” that are to be the parts of the string

● Since the order is important, an array holds the
collection

● May be specified as the first argument of the
“New” message or set using the attribute name
- mlsParts

● E.g. .array~of(“This string, while not that long,” ,
“spans 3 lines by using the ooRexx” ,
“continuation syntax.”)

The Tool - MLString(4)

● The Attributes (cont.)
– How the “lines” are to be joined together to form

the string
● Should the “lines” be joined by abuttal

concatenation, blank concatenation, .endofline,
or some other string

● May be specified as the second argument of the
“New” message or set using the attribute name
– join

● Note that Rexx continuation syntax is actually
blank concatenation

The Tool - MLString(5)

● The Attributes (cont.)
– The variable delimiter

● The character used to enclose variables to
distinguish them from literal data

● May be specified as the third argument of the
“New” message or set using the attribute name
– varFlag

● As opposed to Rexx syntax, the “lines” are
considered literal data, continuation is implied
(the end of the array indicates end of the data),
and variables are enclosed by the varFlag
character

The Tool - MLString(6)

● The Attributes (cont.)
– The variable values

● Because of encapsulation, the object cannot
“see” the variables of the calling program

● Supplied as a directory whose indexes are the
variable names and whose items are the
corresponding values

● May be specified as the fourth argument of the
“New” message or set using the attribute name
– var_values

● Easily done using .context~variables

The Tool - MLString(7)

● The Methods
– toString

● Takes the object data “line” by “line”, strips
leading and trailing “whitespace”, searches for
variables and substitutes their values, and then
joins the “lines” together using the “join” string

● Accepts up to three arguments to supply/override
the values for the join, varFlag and var_values
attributes

– makeString
● Simply forwards to toString; no arguments

Using MLString

● Specifying the array of “lines” for mlsParts
– OoRexx 5.0.0 introduces the Resource directive

● Very similar to a Here Document
● The lines between the directive and the end

delimiter may be almost any data
● An example using earlier data

::resource theLines
This string, while not that long,
spans 3 lines by using the ooRexx
continuation syntax.
::END

Using MLString(2)

● Specifying the array of “lines” for mlsParts
(cont.)

– Retrieve the data as an array using
.resources[thelines]

– Pass that as the first argument of the “New”
method

● .mlstring~new(.resources[theLines])

– Alternatively
● .mlstring~new(theLines)

Using MLString(3)

● Specifying the array of “lines” for mlsParts
(cont.)

– Including the data “inline”
● Simply enclose the block of lines in a single block

comment
● Pass an “offset” (integer) to the first data line as

the first argument of the “New” method
● An example

.mlstring~new(1) /*
 this is line 1 and
 this is line 2.
 */ ---

Using MLString(4)

● Specifying the “join” string
– For blank concatenation, use “ ”

– For abuttal concatenation, use “”

– For multiple output lines, use .endofline
● Special case: “lines” are NOT stripped
● Output is WYSIWYG (variables may still be

included and will be replaced by their values)
● Typical usage is “help text”

Using MLString(5)

● Working with variables
– MLString is NOT an expression evaluator

● No function calls – date()
● No calculations – n / 3

– Either simple or compound variables will be
replaced by their values

– Must specify both the delimiter/flag AND the
directory of values to MLString

– Choose a flag character that is NOT in your
data (or, at least, occurs sparingly)

Using MLString(6)

● Working with variables (cont.)
– A data “line” must contain an even number of

varFlag characters or they will be ignored

– If varFlag is \ and fred has the value 3:
● \fred\ → 3
● \ferd\ → FERD
● \ \ → a blank
● \\ → \

– Alternate syntax for supplying var_values:
● .mlstring~new(, , , .context)

Using MLString(7)

● Eliminating the need to pass .context
– Routines written in C++ have access to an API

that will return the calling program's context

– The MLString function takes 3 optional
arguments

● Same as the first three arguments of the “New”
method of the .mlstring class

– Using the native APIs
● Determines the caller's context
● Interfaces to the .mlstring class using the 4 args

Using MLString(8)

● Eliminating the need to pass .context (cont.)
– Rather than return an instance of .mlstring, the

function returns the result of sending that
instance the toString method, i.e. a string

– An example:
● fullStop = '.';msg = mlstring(1, ' ', '\') /*

This is line 1 and
 this is line 2\fullStop\
--- */
say msg

● Yields
This is line 1 and this is line 2.

Using MLString(9)

● Another example
– The sql command from before:

● sql_cmd = "INSERT INTO wp_posts (",
"`ID`,",
"`post_author`,",

 "`post_date`,",
…

"VALUES(",
"'"gp.ID.1"',",
"'"gp.post_author.1"',",
"'"gp.post_date.1"',",

...

Using MLString(10)

● Another example (cont.)
– Using the mlstring routine

● sql_cmd = mlstring(1, '', '\') /*
INSERT INTO wp_posts (

`ID`,
`post_author`,

 `post_date`,
…

VALUES(
'\gp.ID.1\',
'\gp.post_author.1\',
'\gp.post_date.1\',

…
*/ ---

Summary

● Rexx permits the definition of a string to span
multiple lines

– The syntax required can obscure the contents of
that string, especially for complex strings used
to communicate with non-Rexx programs

● The MLString tool can help
– Allows the programmer to focus on the syntax of

the string he is trying to create without being
concerned with making it “legal” Rexx as well

● Questions/feedback: gbarmwater@alum.rpi.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

