
(BSF4)ooRexx and Java Web Servers
Rony G. Flatscher (Rony.Flatscher@wu.ac.at), WU Vienna

"The 2020 International Rexx Symposium", Web-based Conference
September 29th – October 1st , 2020

Abstract. BSF4ooRexx is a bi-directional Java bridge for the dynamic scripting language
ooRexx which implements the Java scripting framework and can therefore be employed as
a scripting language in many Java contexts. Java based web servers like Apache Tomcat
implement the Java2EE/JakartaEE JSP (Java server pages) specifications which allow
among other things to extend the JSP's functionality by providing tag libraries ("taglibs").
This article introduces such a taglib ("ScriptTagLibs") that allows any Java scripting
language – in this article ooRexx [12] – to be employed for servlet programming and
creating HTML content that gets returned as a result of a client's request and how to
deploy it on Java based web servers in form of a war ("web application archive") file.

1 Introduction
Java web servers have been defined in the form of standardized services that
constitute the package "J2EE" ("Java enterprise edition") which has been handed
over to the Eclipse foundation by Oracle in the fall of 2017. Eclipse continues to
maintain and develop the specifications under the new name "Jakarta EE"
("Jakarta enterprise edition") [1] 1. The implementation of the standardized Jakarta
EE services by different companies and organisations should allow the creators of
web applications to deploy them using the "web application archive" ("war")
format [2] unchanged on the different Java web servers.

The Apache Software Foundation (ASF, [3]) Tomcat Java web server project2 [4]
maintains a list of links to the Java/Jakarta specifications at [5].

There is a fundamentally important specification named "Java/Jakarta Servlet"

1 The Wikipedia article refers to the Oracle trademark for "Java" which Oracle uses to force
Eclipse and others to use another term than Java, in the case of web servers (web containers)
Eclipse uses the term "Jakarta" instead. This trademark issue also forced the top-level package
name to be changed from javax. to jakarta. instead by Eclipse. It is to be expected that for a few
years this naming issue will cause confusion and difficulties during the transition period. In this
article "Java/Jakarta" will indicate this transitional name change from "Java EE" to "Jakarta EE"
in the context of web server software.

2 Apache Tomcat will be used in the context of this article as a proof-of-concept Java based web
server for creating web applications using Rexx. Tomcat versions 9 or earlier are using the
original "javax." package name in its implementations of the standardized services for servlet,
JSP and TagLib implementations, whereas starting with Tomcat version 10 the new package
name "jakarta." gets used instead.

(BSF4)ooRexx and Java Web Servers (2021-03-17) 1/25

which defines how client requests supplying an URL get mapped on the web server
to Java programs serving the request and how such Java programs need to be
structured.

Another important standardized service in this context is called "Java/Jakarta
Server Pages (JSP) and Expression Language (EL)" which allows mixing
HTML/XML text with Java code that will create additional HTML/XML text to be
returned to the requesting client. In addition this specification allows for creating
and implementing so called "tag libraries" in Java to extend this functionality, a
feature that gets exploited in the "ScriptTagLibs"3 developed by the author in this
context in order to allow Java script languages to be deployable within JSP pages.
As BSF4ooRexx implements a Java script engine for ooRexx [13], one can use
ooRexx to implement the logic at the web server side.

This article will employ the open-source Apache Tomcat Java-based web server [4]
and describes the directory layout of the installation (home) directory of the
Tomcat 9 and 10 servers at the time of writing. The directory named "webapps" is
used to deploy web applications, that themselves need to follow a specific
subdirectory layout which will get briefly described.

Then a simple Java servlet will get demonstrated, which implements all logic in a
single Java class, thereby introducing the important configuration file "WEB-
INF/web.xml" for allowing the Tomcat server to determine which Java class needs to
be loaded and executed depending on the web client request. This very Java
servlet example will then be implemented in form of a "Java Server Page (JSP)"
which in essence is an HTML/XML text file that contains the markup for the client's
browser, interspersed with Java code snippets. This JSP file gets turned into a Java
class that contains the interspersed Java code snippets together with Java output
statements that create the markup found in the JSP file which then gets compiled
on the fly. Whenever a JSP file's content gets changed, the Java based web server
will reprocess the JSP file and recompile the resulting Java class and use that
version from then on.

The article then introduces the "ScriptTagLibs" taglib library, developed for the
purpose of allowing any Java based scripting language to be used in JSPs instead of
3 At the time of writing the "ScriptTagLibs" are offered as "javax.ScriptTagLibs.jar" and

"jakarta.ScriptTagLibs.jar" depending on the namespace used in the hosting Java web
server. Each jar file includes two tag libraries, one for running scripts using Apache BSF ("Bean
Scripting Framework"), one for running scripts using the newer standard Java scripting
framework in the package "javax.script" (a.k.a. "JSR-223") introduced with Java 6.

(BSF4)ooRexx and Java Web Servers (2021-03-17) 2/25

Java, empowering anyone who knows, e.g., Rexx to create Web server applications
with JSPs that contain Rexx code instead of Java code!

2 The Apache Tomcat Java Based Web Server
The free and open-source Apache Tomcat Java based web server is one of the best
maintained, very powerful, yet easy to install, to configure, to deploy and to use
Java based web servers.

2.1 A Brief Overview of the Tomcat Directory Layout
The Apache Tomcat Java based servers have a simple, easy to use directory
structure they create upon installation. At the time of this writing the Tomcat 9 and
10 Java based web servers create the following directories in their installation
(home) directory4:

• bin: this directory includes all scripts and binaries (jar – Java archive files)
needed to control the Tomcat server, including scripts to start and stop the
Tomcat server from the command line.

• conf: this directory contains all of the Tomcat global configurations, mostly
in form of XML encoded text files. E.g., the file server.xml defines the
server's characteristics including the TCP/IP port5 at which the server
listens for client requests. Another important file is tomcat-users.xml which
allows for defining Tomcat users with their passwords and roles, e.g., for
accessing the Tomcat manager console.

• lib: this directory contains all jar (Java archives) files that should be shared
among all web applications.

• logs: this directory contains all log files that Tomcat creates at runtime. E.g.,
output to stdout (standard output file) or to stderr (standard error file) will be
logged and stored in the respective text files in this directory.

• temp: this directory is Tomcat's temporary directory.

• webapps: this directory serves as the home directory for any web application

4 The Tomcat installation refers to its installation (home) directory with the shell variable named
CATALINA_HOME.

5 In this article the Tomcat server is configured to listen to port 8080. While developing and testing
web applications at the server itself, the server name will be "localhost", such that all the URLs in
this article are always led in by "localhost:8080/".

(BSF4)ooRexx and Java Web Servers (2021-03-17) 3/25

that gets deployed. Tomcat creates the three subdirectories

◦ docs: serves the Tomcat documentation.

◦ manager: supplies the Tomcat manager console.

◦ ROOT: serves as the default Apache Tomcat interface, with links to Tomcat
documentation, Tomcat wiki, Tomcat mailing lists and the like.

• work: this directory gets usually used by Tomcat whenever a JSP file needs to
be turned into a compiled Java class.

Anyone who wishes to add a new web application needs to create a subdirectory in
the webapps directory. A web application subdirectory may contain the
subdirectory WEB-INF with a configuration file named web.xml that tells the Tomcat
server among other things how to map a specific client request to the appropriate
web application service.6

A web application can be distributed in form of a war (web application archive) file
which can be deployed on any Java based web server adhering to the Java based
web server standards [5] by simply copying it to the webapps subdirectory.7 The
Java based web server will deploy it by creating a subdirectory matching the base
name of the war file and extracting all of its contents into it. Deleting the war file
from the webapps directory will remove (undeploy) the web application
subdirectory from the web server.

2.2 Serving a Client Request with a Java Servlet
In this section a web application will use a single Java program to create the HTML
page that gets sent back to the client. The web application directory
rexxla_01_Servlet_Java will contain the following files:

• rexxla_01_Servlet_Java/index.html: as this file is named index.html it will
be returned to the client by the web server by default. Figure 1 shows the
content, Figure 2 shows how it gets rendered in the client's browser.

• rexxla_01_Servlet_Java/src/ServletJava.java: the source code of the Java
class that creates the HTML text that the client receives from the server.

6 A web application may omit the WEB-INF subdirectory in which case one of the following files
should be available: index.htm, index.html or index.jsp.

7 To create a web application war file one merely needs to change into the web application
subdirectory and create a zip archive of all files contained in it but use the file extension war
instead of zip.

(BSF4)ooRexx and Java Web Servers (2021-03-17) 4/25

Figure 3 depicts the Java code, Figure 4 displays the text produced by the
Java servlet and Figure 5 shows how this text gets formatted in the client's
browser.

(BSF4)ooRexx and Java Web Servers (2021-03-17) 5/25

package org.rexxla; // define package name for this class
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
// Minimal Java servlet, implements the specific part for HTML body; HttpServlet
// will create, inject and complete HTML to return
public class ServletJava extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html"); // set content type
 PrintWriter out = response.getWriter(); // get PrintWriter
 String crlf="\015\012"; // HTML must use CR-LF as newline
 out.println("<h1>Hello, world (Java Servlet)</h1>" + crlf);
 out.println("<p>This servlet was executed, because of the following URL:" +
 "URL request.getRequestURL():
<code>"+
 request.getRequestURL()+"</code>" + crlf + // URI
 "its URI being request.getRequestURI():
<code>"+
 request.getRequestURI()+"</code></p>"); // URL
 }
}

Figure 3: Content of "rexxla_01_Servlet_Java/src/ServletJava.java".

<html>
 <head>
 <title>Servlet (index.html)</title>
 </head>
 <body>
 Please click this link to run the servlet.
 </body>
</html>

Figure 1: Content of "rexxla_01_Servlet_Java/index.html".

Figure 2: Result of client requesting the web application named "rexxla_01_Servlet_Java".

• rexxla_01_Servlet_Java/WEB-INF/web.xml: this file gets used to configure
this web application, its content is displayed in Figure 6 below. In the servlet
element it defines a logical name "ServletJavaHelloWorld" for the servlet and
the fully qualified name of the compiled Java class "org.rexxla.ServletJava"
that should be executed. The servlet-mapping element maps the client request
(in this case "/runServlet") to the logical name "ServletJavaHelloWorld" that will
get executed and create the HTML text to be returned to the client.

• rexxla_01_Servlet_Java/WEB-INF/classes/org/rexxla/ServletJava.class:
the compiled Java class that the server will run and which then creates the
HTML text that the client receives from the server.

(BSF4)ooRexx and Java Web Servers (2021-03-17) 6/25

Figure 5: Response to client which was created by the Java servlet.

Figure 4: The HTML text created by the Java servlet.

The URL gets created using the web server's name "localhost", explicitly denoting
the port 8080, the web application's name "rexxla_01_Servlet_Java" and the url-
pattern "/runServlet" concatenated with each other to form the URL:
"localhost:8080/rexxla_01_Servlet_Java/runServlet". The link to the very same Java
servlet in the web application's index file "index.html" in Figure 1 can be simply
denoted as "runServlet" which then will be resolved by concatenating it with a slash
as a delimiter to the document's base URL "localhost:8080/rexxla_01_Servlet_Java".

2.3 Serving a Client Request with a Java Server Page (JSP)
In this section a web application will use a Java server page (JSP) to define the
HTML page that gets sent back to the client. The very first time a new or changed
JSP file gets requested, the server will create a Java class for it, compile it and run
it, which will create the HTML text to be sent back to the requesting client.
Successive requests for that same JSP file will cause the immediate execution of
the compiled Java class. The web application directory rexxla_02_JSP will contain
the following files:

• rexxla_02_JSP/index.html: as this file is named index.html it will be

(BSF4)ooRexx and Java Web Servers (2021-03-17) 7/25

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"
 version="4.0"
 metadata-complete="true">
 <display-name>Minimal org.rexxla.ServletJava Demo</display-name>
 <description>
 Welcome to a minimal ServletJava demo
 </description>
 <!-- 'servlet'-element must precede the 'servlet-mapping'-element ! -->
 <servlet>
 <servlet-name>ServletJavaHelloWorld</servlet-name>
 <servlet-class>org.rexxla.ServletJava</servlet-class>
 </servlet>
 <!-- 'servlet-mapping'-element must follow the 'servlet'-element ! -->
 <servlet-mapping>
 <servlet-name>ServletJavaHelloWorld</servlet-name>
 <url-pattern>/runServlet</url-pattern>
 </servlet-mapping>
</web-app>

Figure 6: Content of "rexxla_01_Servlet_Java/WEB-INF/web.xml".

returned to the client by the web server by default. Figure 7 shows the
content, Figure 8 shows how it gets rendered in the client's browser.

• rexxla_02_JSP/helloWorld.jsp: this JSP file includes the same Java
statements as the Java servlet in Figure 5 above interspersed with the HTML
text. Figure 9 shows the content, Figure 10 shows the result of running this

(BSF4)ooRexx and Java Web Servers (2021-03-17) 8/25

Figure 8: Result of client requesting the web application named "rexxla_02_JSP".

<html>
 <head>
 <title>JSP (index.html)</title>
 </head>
 <body>
 Please click helloWorld.jsp to run the JSP.
 </body>
</html>

Figure 7: Content of "rexxla_02_JSP/index.html".

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Minimal JSP</title>
</head>
<body>
<%
String crlf="\015\012"; // HTML must use CR-LF as newline
out.println("<h1>Hello, world (JSP)</h1>" + crlf);
out.println("<p>This JSP was executed, because of the following URL:" +
 "URL request.getRequestURL():
<code>"+
 request.getRequestURL()+"</code>" + crlf + // URL
 "its URI being request.getRequestURI():
<code>"+
 request.getRequestURI()+"</code></p>"); // URI
%>
</body>
</html>

Figure 9: Content of "rexxla_02_JSP/helloWorld.jsp".

JSP in the client's browser.

The sections in Figure 9 with a yellow background highlight the JSP related
directive. As can be seen the character sequence "<%" leads-in and "%>" ends
a JSP directive. Any text outside of these JSP directives represents plain
HTML text that will be sent to the client without any changes. The second
JSP section contains the Java code8 that will create and insert additional

8 The JSP Java generator will make sure that the following nine variables (referencing the "JSP
implicit objects") are always available: application, config, exception, out (an instance of
{javax|jakarta}.servlet.jsp.JspWriter), page, pageContext, request, response, session.

(BSF4)ooRexx and Java Web Servers (2021-03-17) 9/25

Figure 10: Response to client which was created by the JSP.

Figure 11: The HTML text created by the JSP.

HTML text at that location. The resulting HTML text that the requesting
client receives from this JSP is shown in Figure 11 above.

• rexxla_02_JSP/WEB-INF/web.xml: this file gets depicted in Figure 12 and is
not needed for this simple web application. However, its content will be used
to describe this web application in the Tomcat manager interface.

2.4 The "ScriptTagLibs" Taglib Library and (BSF4)ooRexx
Java based web servers allow the usage of taglib libraries within JSP pages. A taglib
library contains tag handlers that implement the BodyTag9 interface class making it
possible to extend the valid tags of a JSP with custom implementations. Tag
libraries need to come with a matching TLD (tag library description) text file,
which defines the tag names with their possible attributes.

Early on in the ASF there were two taglib libraries created to allow "scriptlets" and
"expressions" to be used in JSP pages that allowed for implementing the code in
one of the Apache BSF10 [6] scripting languages. These taglib libraries got
deprecated over time, but can still be fetched from [8]. As such they served as the
starting point for implementing the "ScriptTagLibs" libraries [9] in the fall of 2020

9 Depending on the targeted Java based web server implementation, the fully qualified name can
be either javax.servlet.jsp.tagext.BodyTag or jakarta.servlet.jsp.tagext.BodyTag (Tomcat
9 or earlier use the javax. top level package name, starting with Tomcat 10 the jakarta. top level
package name gets used, cf. the "History" section in [1]).

10 Interestingly, BSF was originally created as an open-source project at IBM for allowing scripting
languages to be deployable in Java server pages (JSP)! The code was later donated to ASF. With
Java 6 a proper Java scripting framework (package javax.script also dubbed "JSR-223" which
defines the specifcation, cf. [7]) got introduced into the language, which over time made BSF less
relevant. Yet, Apache BSF is still being used in some Java based applications and there may be
scripting language implementations for Java that support BSF only.

(BSF4)ooRexx and Java Web Servers (2021-03-17) 10/25

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"
 version="4.0"
 metadata-complete="true">
 <display-name>Minimal JSP-Demo</display-name>
 <description>
 Welcome to a minimal JSP demo
 </description>
</web-app>

Figure 12: Content of "rexxla_02_JSP/WEB-INF/web.xml".

and which get applied and demonstrated as a proof of concept in this article.

There are two taglib libraries, javax.ScriptTagLibs.jar for Tomcat 9 or earlier
and jakarta.ScriptTagLibs.jar for Tomcat 10, which implement the tags script
and expr identically.

Each tag library comes with two versions, one for deploying script code that gets
executed by Apache BSF using the TLD file named script-bsf.tld and one where
the script code gets executed by the newer and standard Java scripting framework
("JSR-223") named script-jsr223.tld.11 The script and expr tags are implemented
for both, BSF and JSR-223. Note, however, that JSR-223 has additional attributes
due to additional features available in the newer and standard Java scripting
framework, notably the ability to compile and execute compiled scripts.

Table 1 gives a brief overview of the attributes12 that can be supplied to the script
and expr tags in JSP.

Tag Name

Attribute Name script expr Comment

type
Must Must Scripting language name, e.g., "rexx".

Hint: In JSR-223 it is possible to supply alternatively a
mime-type or file-extension .

arguments
Optional Optional Defaults to "true": supply the implicit objects "request",

"response" and "out" as arguments (in the listed order) to
the script.

cacheSrc

Optional Optional Defaults to "true". Will read the script from the external
file once and then reuse the cache.
Advice: while developing the script logic, set this attribute
to "false" in order to force always reading from the file
system in order to reflect any code changes in the external
script file.

compile Optional Optional JSR-223 only, defaults to "true". Upon first execution
compile the script and execute the compiled version.

debug Optional Optional Defaults to "false": injects debug information at the JSP
directive's location in the JSP file.

name Optional Optional Any string, to ease locating exceptions (for debugging).

reflect Optional Optional Defaults to "false": causes an implicit HashMap object

11 The TLD files get distributed with the ScriptTagLibs.jar files and can be found in the jar's META-
INF directory.

12 The current values of these attributes can be fetched from the invoked script by accessing the
implicit object named "ScriptTaglibs.Attributes", which is a java.util.Map.
If using the BSF taglib (script-bsf.tld), then the ooRexx programmer may use the function
bsf.lookup(name), if using the JSR-223 taglib (script-jsr223.tld) then the javax.script.
ScriptContext.getAttribute(name) method to get access to implicitly registered objects.

(BSF4)ooRexx and Java Web Servers (2021-03-17) 11/25

Tag Name

Attribute Name script expr Comment

named "scriptTagLibInfos" to be created that contains
taglib and namespace related information as well as the
current values of all attributes.

slot Optional Optional Any string that a JSP/script developer can use for any
purpose (can be fetched from the invoked script).

src Optional Optional URL of external script code, must reside in the web
application directory.

throwException
Optional Optional Defaults to "false": controls whether the execution of the

JSP page should continue in the case that an exception
gets thrown in a script.

Table 1: ScriptTagLibs (Tags and their Attributes).

The web application rexxla_03_ScriptTagLib demonstrates usages of the script tag
from the ScriptTagLibs Java archives:

• a simple JSP containing Rexx code in a script tag to create part of the HTML
text to be sent to the requesting client (helloWorld-bsf-01.jsp, helloWorld-
jsr223-01.jsp),

• a simple JSP using a script tag with the src attribute to point to the Rexx script
stored in the external file named helloWorld.rex in the web application's
directory which will get loaded and executed (helloWorld-bsf-02.jsp,
helloWorld-jsr223-02.jsp).

Note: due to the supplying of the implicit objects "request", "response" and
"out" as arguments to the invoked scripts by the implementation of the
ScriptTagLibs taglib library one can regard such scripts to implement the
javax.servlet.Servlet interface method service(ServletRequest
request, ServletResponse response)!

The JSP files containing "bsf" in their name will use Apache BSF and those with
"jsr223" will use the newer standard Java scripting framework (JSR-223) to execute
the Rexx scripts in the JSP pages. In order to run these examples one needs to
install the latest version of ooRexx 5 (at the time of this writing in beta) from [10]
together with the latest version of the ooRexx-Java bridge BSF4ooRexx from [11],
which supports both, Apache BSF and the newer standard Java scripting
framework (JSR-223).

The bsf4ooRexx-v641-20210207-bin.jar (or newer) from BSF4ooRexx and the
ScriptTagLibs Java archives javax.ScriptTagLibs.jar (Tomcat 9 or earlier) or

(BSF4)ooRexx and Java Web Servers (2021-03-17) 12/25

jakarta.ScriptTagLibs.jar (Tomcat 10 or later) can be copied to Tomcat's
home/installation directory ("CATALINA_HOME") and there into the subdirectory
named lib, which causes Tomcat to make them available to all web applications.
Alternatively these Java archives can be copied to the web application's WEB-
INF/lib directory which is searched by Tomcat before Tomcat's lib directory in its
home/installation directory.

The file script-bsf.tld allows one to use BSF to execute the scripts contained in a
JSP page, the file script-jsr223.tld allows one to use the newer and standard
Java scripting framework (JSR-223) to execute the scripts, which is advised. Both
files are included in the ScriptTestLibs.jar file in the subdirectory named META-
INF.

The web application named rexxla_03_ScriptTagLib demonstrates how to use
Apache BSF and execute scripts interspersed in a JSP and an external script, and
do exactly the same with the newer standard Java scripting framework (JSR-223).
As the reader can see (cf. Figures 15 and 18), the only difference between these two
versions of the JSP files is which taglib gets referred to by using the appropriate uri
value in the JSP directive named taglib at the very top of the JSP files.

The web application directory rexxla_03_ScriptTagLib will contain the following
files:

• rexxla_03_ScriptTagLib/index.html: as this file is named index.html it will

(BSF4)ooRexx and Java Web Servers (2021-03-17) 13/25

<html>
 <head>
 <title>JSP ScriptTagLibs (index.html)</title>
 </head>
 <body>
 <p>Please click on any of the following minimal Rexx programs:

 Employing the Apache Bean Scripting Framework (BSF):

 helloWorld-bsf-01.jsp
 helloWorld-bsf-02.jsp
 (employing Rexx program helloWorld.rex)

 Employing the Java Scripting Framework (a.k.a. "jsr-223"):

 helloWorld-jsr223-01.jsp
 helloWorld-jsr223-02.jsp
 (employing Rexx program helloWorld.rex)

 </body>
</html>

Figure 13: Content of "rexxla_03_ScriptTagLib/index.html".

be returned to the client by the web server by default. It makes the JSPs
helloWorld-bsf-01.jsp, helloWorld-bsf-02.jsp, helloWorld-jsr223-
01.jsp, and helloWorld-bsf-02.jsp available via links and also allows the
external Rexx program in helloWorld.rex to be displayed directly in a
browser by supplying an appropriate link. Figure 13 shows the file's content,
Figure 14 shows how it gets rendered in the client's browser.

rexxla_03_ScriptTagLib/helloWorld-bsf-01.jsp: this JSP file includes
Rexx code in a script element which gets executed via BSF. Its content is
shown in Figure 15 below. At the top of that JSP page the JSP directive
"< %@ taglib" (first yellow backround section) defines in its uri attribute
that BSF should be used ("http://rexxla.org/taglibs/bsf") in the web
application and the prefix "s" to denote the namespace for it causing the
script tag to be written as "<s:script>" in the JSP.

The second section with yellow background in Figure 15 highlights the script
element with the type attribute having the value "rexx" declaring the
scripting language Rexx to be used for executing the script's code which
creates some HTML text using information from the "request" argument.
Figure 16 shows the client's browser formatting the returned HTML text
which gets depicted in Figure 17.

(BSF4)ooRexx and Java Web Servers (2021-03-17) 14/25

Figure 14: Result of client requesting the web application "rexxla_03_ScriptTagLib".

(BSF4)ooRexx and Java Web Servers (2021-03-17) 15/25

Figure 16: Response to client which was created by "helloWorld-bsf-01.jsp".

<%@ page session="false" pageEncoding="ISO-8859-1" contentType="text/html;
charset=ISO-8859-1" %>
<%@ taglib uri="http://rexxla.org/taglibs/bsf" prefix="s" %>
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Minimal ScriptTagLibs-JSP</title>
</head>
<body>
<s:script type="rexx">
use arg request
say "<h1>Hello, world (ScriptTagLibs JSP)</h1>"
say "<p>This JSP was executed, because of the following URL:"
say "URL request~getRequestURL():
"
say "<code>"request~getRequestURL~toString"</code>"
say "its URI being request~getRequestURI():
"
say "<code>"request~getRequestURI"</code></p>"
</s:script>
</body>
</html>

Figure 15: Content of "rexxla_03_ScriptTagLib/helloWorld-bsf-01.jsp".

• rexxla_03_ScriptTagLib/helloWorld-jsr223-01.jsp: this JSP file includes
Rexx code in a script element which gets executed via the newer standard
Java scripting framework (JSR-223). Its content gets depicted in Figure 18
below, the client's browser presenting the returned HTML text is shown in
Figure 19 below.

Comparing the JSP text (cf. Figure 18) with the one for helloWorld-bsf-
01.jsp (cf. Figure 15 above) it appears to be identical. The only difference is

(BSF4)ooRexx and Java Web Servers (2021-03-17) 16/25

Figure 17: HTML text created and returned by "helloWorld-bsf-01.jsp".

<%@ page session="false" pageEncoding="ISO-8859-1" contentType="text/html;
charset=ISO-8859-1" %>
<%@ taglib uri="http://rexxla.org/taglibs/jsr223" prefix="s" %>
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Minimal ScriptTagLibs-JSP</title>
</head>
<body>
<s:script type="rexx">
use arg request
say "<h1>Hello, world (ScriptTagLibs JSP)</h1>"
say "<p>This JSP was executed, because of the following URL:"
say "URL request~getRequestURL():
"
say "<code>"request~getRequestURL~toString"</code>"
say "its URI being request~getRequestURI():
"
say "<code>"request~getRequestURI"</code></p>"
</s:script>
</body>
</html>

Figure 18: Content of "rexxla_03_ScriptTagLib/helloWorld-jsr223-01.jsp".

the value of the uri attribute in the "taglib" JSP directive at the top of both JSP
files!

• rexxla_03_ScriptTagLib/helloWorld-bsf-02.jsp: this JSP file (cf. Figure
20) includes a script element that defines the type attribute with the value
"rexx" and refers to an external file containing the code because of the
presence of the src attribute with the value "helloWorld.rex". Note that the
external Rexx program in this case needs to create all of the HTML text that
gets returned to the requesting client as the JSP itself has no HTML text
defined because it consists of two JSP directives and a single, empty JSP tag
("<s:script …") only. The Rexx code from the external file gets executed
using BSF. Its content is shown in Figure 24 at page 20 below. The client's
browser rendering the returned HTML data is shown in Figure 21 below.

• rexxla_03_ScriptTagLib/helloWorld-jsr223-02.jsp: this JSP file (cf. Figure
22) includes a script element that defines the type attribute with the value
"rexx" and refers to an external file containing the code because of the

(BSF4)ooRexx and Java Web Servers (2021-03-17) 17/25

Figure 19: Response to client which was created by "helloWorld-jsr223-01.jsp".

<%@ page session="false" pageEncoding="ISO-8859-1" contentType="text/html;
charset=ISO-8859-1" %>
<%@ taglib uri="http://rexxla.org/taglibs/bsf" prefix="s" %>
<!-- external Rexx script will create all of the HTML! -->
<s:script type="rexx" src="helloWorld.rex" />

Figure 20: Content of "rexxla_03_ScriptTagLib/helloWorld-bsf-02.jsp".

presence of the src attribute with the value "helloWorld.rex". Note that the
external Rexx program in this case needs to create all of the HTML text that
gets returned to the requesting client as the JSP itself has no HTML text

(BSF4)ooRexx and Java Web Servers (2021-03-17) 18/25

<%@ page session="false" pageEncoding="ISO-8859-1" contentType="text/html;
charset=ISO-8859-1" %>
<%@ taglib uri="WEB-INF/script-jsr223.tld" prefix="s" %>
<!-- external Rexx script will create all of the HTML! -->
<s:script type="rexx" src="helloWorld.rex" />

Figure 22: Content of "rexxla_03_ScriptTagLib/helloWorld-jsr223-02.jsp".

Figure 21: Response to client which was created by "helloWorld-bsf-02.jsp".

Figure 23: Response to client which was created by "helloWorld-jsr223-02.jsp".

defined because it consists of two JSP directives and a single, empty JSP tag
("<s:script …") only. The Rexx code from the external file gets executed
using the newer standard Java scripting framework (JSR-223). Its content is
shown in Figure 24. The client's browser rendering the returned HTML data
is shown in Figure 23 above

Comparing the JSP text (cf. Figure 22) with the one for helloWorld-bsf-
02.jsp (cf. Figure 20) it appears to be identical. The only difference is the
value of the uri attribute in the taglib JSP directive at the top of both JSP files
which determines whether Apache BSF or the newer and standard Java
scripting framework gets used to execute the embedded scripts!

• rexxla_03_ScriptTagLib/helloWorld.rex: this file contains the Rexx code
referred to in helloWorld-bsf-02.jsp and helloWorld-jsr223-02.jsp.
Figure 24 below depicts its content.

This Rexx program uses the resource directive introduced with ooRexx 5
which allows one to define the different sections of the HTML text
verbatimly. The Rexx code makes sure to write these HTML sections
interspersed with dynamically acquired information from the Java web
server at the time this program runs.

It is this servlet-like Rexx program that creates the HTML text for both, the
helloWorld-bsf-01.jsp and helloWorld-jsr223-01.jsp JSP files.

• rexxla_03_ScriptTagLib/WEB-INF/web.xml: this file gets depicted in Figure
27 and is not needed for this web application. However, its content describes
this web application in the Tomcat manager interface.

• The tag library description files script-bsf.tld (BSF taglib library) and
script-jsr223.tld (JSR-223 taglib library) are contained in the META-INF
directory of the ScriptTagLibs Java archives. Both files are almost identical
except for the shortname, uri, info and the tagclass element (denotes the fully
qualified Java class name that must be used to process the respective tag).
Figures 25 and Error: Reference source not found depict the content of
"script-bsf.tld" and highlight the most important definitions in it. The content
of "script-jsr223.tld" is not shown for brevity, as it is almost identical except
for the lines # 9, 10, 11, 14, 48, and having an additional attribute named
"compile" for the script and expr tags.

(BSF4)ooRexx and Java Web Servers (2021-03-17) 19/25

• rexxla_03_ScriptTagLib/WEB-INF/lib: this directory may contain the Java
archives bsf4ooRexx-v641-20201217-bin.jar13 (or newer) from BSF4ooRexx
[11] and the ScriptTagLibs Java archive javax.ScriptTagLibs.jar (Tomcat 9
or earlier) or jakarta.ScriptTagLibs.jar (Tomcat 10 or later). If these
archives are present then they get used first when looking for Java classes by
Tomcat, otherwise these two Java archives must reside in Tomcat's
home/installation directory ("CATALINA_HOME") and its immediate
subdirectory named lib.

13 Note: if there may be more than one web application that uses BSF4ooRexx, then one must copy
bsf4ooRexx-v641-20201217-bin.jar (or newer) to the CATALINA_HOME/lib directory. The reason
being that Tomcat uses different classloaders for different web applications and that the native
BSF4ooRexx library caches Java classes for performance reasons. If cached Java classes get
used by a classloader that did not load them then Java runtime errors may occur as a result.
Placing bsf4ooRexx-v641-20201217-bin.jar (or newer) only into the CATALINA_HOME/lib
directory foregoes this problem.

(BSF4)ooRexx and Java Web Servers (2021-03-17) 20/25

use arg request
say .resources~top_part -- write top HTML block
say " <code>"request~getRequestURL~toString"</code>"
say .resources~middle_part -- write middle HTML block
say " <code>"request~getRequestURI"</code>"
say .resources~bottom_part -- write bottom HTML block
 -- constant HTML texts
::resource top_part -- top HTML block
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
 <title>Minimal ScriptTagLibs-JSP</title>
 </head>
 <body>
 <h1>Hello, world (ScriptTagLibs JSP)</h1>
 <p>This JSP was executed, because of the following URL:
 URL request~getRequestURL():

::END

::resource middle_part -- middle HTML block
 its URI being request~getRequestURI():

::END

::resource bottom_part -- bottom HTML block

 </body>
</html>
::END

Figure 24: Content of "helloWorld.rex".

(BSF4)ooRexx and Java Web Servers (2021-03-17) 21/25

1. <?xml version="1.0" encoding="ISO-8859-1" ?>
2. <!DOCTYPE taglib
3. PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
4. "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">
5. <!-- a tag library descriptor -->
6. <taglib>
7. <tlibversion>2.0</tlibversion>
8. <jspversion>1.1</jspversion>
9. <shortname>BSF JSP Support</shortname>
10. <uri>http://rexxla.org/taglibs/bsf</uri>
11. <info> Uses Apache BSF to execute scripts and expressions </info>
12. <tag>
13. <name>script</name>
14. <tagclass>org.rexxla.taglibs.bsf.Scriptlet</tagclass>
15. <bodycontent>tagdependent</bodycontent>
16. <info>Run script</info>
17. <attribute>
18. <name>type</name>
19. <required>true</required>
20. </attribute>
21. <attribute>
22. <name>arguments</name>
23. <required>false</required>
24. </attribute>
25. <attribute>
26. <name>cacheSrc</name>
27. <required>false</required>
28. <attribute>
29. <name>debug</name>
30. <required>false</required>
31. </attribute>
32. <attribute>
33. <name>name</name>
34. <required>false</required>
35. </attribute>
36. <attribute>
37. <name>slot</name>
38. <required>false</required>
39. </attribute>
40. <attribute>
41. <name>src</name>
42. <required>false</required>
43. </attribute>
44. </attribute>
45. <attribute>
46. <name>throwException</name>
47. <required>false</required>
48. </attribute>
49. </tag>

… continued in Figure26 below …

Figure 25: Content of "script-bsf.tld", part 1, continued in Figure 26 below …

The ScriptTagLib implementations make sure for Rexx, that each Rexx script's
standard output file will be transparently redirected to the supplied implicit "out"
Java object14, thereby causing Rexx SAY and ooRexx .output~say statements to be

14 The JSR-223 support of ooRexx is realized with the RexxScriptEngine [13] that automatically
prepends prompt strings when accessing standard files to ease the analysis of Java log files. In
the case of accessing the standard output file the prompt "REXXout>" gets prepended which is
undesired in the context of Java server pages as the requesting client would (unexplainably) get

(BSF4)ooRexx and Java Web Servers (2021-03-17) 22/25

 … continued from previous Figure 25 above.

46. <tag>
47. <name>expr</name>
48. <tagclass>org.rexxla.taglibs.bsf.Expression</tagclass>
49. <bodycontent>tagdependent</bodycontent>
50. <info>Evaluate script expression</info>
51. <attribute>
52. <name>type</name>
53. <required>true</required>
54. </attribute>
55. <attribute>
56. <name>arguments</name>
57. <required>false</required>
58. </attribute>
59. <attribute>
60. <name>cacheSrc</name>
61. <required>false</required>
62. </attribute>
63. <attribute>
64. <name>debug</name>
65. <required>false</required>
66. </attribute>
67. <attribute>
68. <name>name</name>
69. <required>false</required>
70. </attribute>
71. <attribute>
72. <name>slot</name>
73. <required>false</required>
74. </attribute>
75. <attribute>
76. <name>src</name>
77. <required>false</required>
78. </attribute>
79. <attribute>
80. <name>throwException</name>
81. <required>false</required>
82. </attribute>
83. </tag>
84. </taglib>

Figure 26: Content of "script-bsf.tld", part 2, continued from Figure 25 above.

transparently redirected. As a result it is quite easy for Rexx programmers to
create the HTML text to be sent back to the requesting client by merely using the
standard Rexx output statements.

3 Roundup and Outlook
This article briefly introduced and discussed Java based web servers, Servlets,
JSPs and taglib libraries. The author created a few taglib libraries ("ScriptTagLibs")
that allow script code to be deployed via Apache BSF or the newer standard Java
scripting framework (a.k.a. JSR-223) as long as there are appropriate scripting
engines available for each framework. As BSF4ooRexx creates a bidirectional
ooRexx-Java bridge and implements BSF and JSR-223 it becomes possible to
exploit Java server pages also for ooRexx where the JSP's code is not implemented
in Java, but rather in [oo]Rexx! As a matter of fact, these new taglib libraries allow
for mixing multiple programming languages (Java as well as Java scripting
languages) in the same JSP page should a need arise. In addition one can mix
execution of scripts via Apache BSF and the newer standard Java scripting
framework which allows one to deploy older Java scripting languages for which
only Apache BSF engine implementations are available.

The article demonstrated with ooRexx nutshell examples the usage of the script tag
from the BSF and the JSR-223 ScriptTagLibs. Using the new ooRexx resource
directive of ooRexx 5.0 it becomes possible to easily define static HTML text in the
ooRexx program and use it for creating the HTML text that gets returned to the

this prompt as part of the HTML text sent back to it. Therefore the ScriptTagLib implementation
for JSR-223 makes sure, that RexxScriptEngine's automatic standard output prompt gets
removed.

(BSF4)ooRexx and Java Web Servers (2021-03-17) 23/25

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"
 version="4.0"
 metadata-complete="true">
<display-name>Minimal JSP-ScriptTagLibs Demo</display-name>
<description>
 Welcome to a minimal JSP-ScriptTagLibs demo
</description>
</web-app>

Figure 27: Content of "rexxla_03_ScriptTagLib/WEB-INF/web.xml".

requesting client. Taken together with the ScriptTagLibs default behaviour of
always supplying the implicit Java objects request, response, and out for each script
invocation as arguments one can create external script programs that mimicry the
{javax|jakarta}.servlet.Servlet's service method.

The script taglibs are available for both namespaces, javax (e.g., Tomcat 9 or
earlier) and jakarta (e.g., Tomcat 10 or later), the distributions [9] carry the top
level package names as their first word: javax.ScriptTagLibs.jar and
jakarta.ScriptTagLibs.jar, respectively.15

Acknowledgements

The author wishes to thank DI Walter Pachl for his feedback and proofreading.

4 References
[1] "Jakarta EE", Wikipedia (as of 2020-11-19):

https://en.wikipedia.org/wiki/Jakarta_EE

[2] "WAR (file format)", Wikipedia (as of 2020-11-19):

https://en.wikipedia.org/wiki/WAR_(file_format)

[3] "Apache Software Foundation" (as of 2020-11-19): http://www.apache.org/

[4] "Apache Tomcat" (as of 2020-11-19): https://tomcat.apache.org/

[5] "Specifications" (links to Java/Jakarta EE specifications in the Apache

Tomcat project) (as of 2020-11-19):

https://cwiki.apache.org/confluence/display/TOMCAT/Specifications

[6] "Bean Scripting Framework (BSF)" (as of 2020-11-19):

https://commons.apache.org/proper/commons-bsf/

[7] "JSR 223: Scripting for the Java Platform " (as of 2020-11-19):

https://jcp.org/en/jsr/detail?id=223

[8] "Apache BSF Taglib Libraries, Deprecated" (as of 2020-11-19):

https://svn.apache.org/repos/asf/jakarta/taglibs/deprecated/bsf/

15 ScriptTagLibs [9] offers example web applications that demonstrate the use of JavaScript. As of
2021-03-16 an ooRexx webshop with cart, RDBMS, e-mail newsletter, file-upload et.al. got
created by a student (a Bachelor thesis at WU Vienna) with the ScriptTagLibs and can be fetched
from: http://wi.wu.ac.at/rgf/diplomarbeiten/#bakk_202102; another student's seminar paper
experiments with PHP (sic!) and Groovy as a proof of concept and can be fetched from:
http://wi.wu.ac.at/rgf/diplomarbeiten/#sem_202102_01.

(BSF4)ooRexx and Java Web Servers (2021-03-17) 24/25

[9] "ScriptTagLibs" (as of 2020-11-19):

https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/rgf/taglibs/

[10] "Open Object Rexx (ooRexx)" (as of 2020-11-19):
https://sourceforge.net/projects/oorexx/

[11] "Bean Scripting Framework for ooRexx (BSF4ooRexx), a Bidirectional

ooRexx-Java bridge" (as of 2020-11-19):
https://sourceforge.net/projects/bsf4oorexx/

[12] Flatscher R.G.: "Resurrecting REXX, Introducing Object Rexx", "ECOOP (RDL –

Revival of Dynamic Languages – Workshop 10)", Nantes, France, July 3rd -7th 2006 (as

of 2020-11-19):
http://wi.wu.ac.at/rgf/rexx/misc/ecoop06/ECOOP2006_RDL_Workshop_Flatscher_Paper.pdf

[13] Flatscher R.G.: "'RexxScript' – Rexx Scripts Hosted and Evaluated by Java

(Package javax.script)", in: Proceedings of the “The 2017 International Rexx

Symposium”, Amsterdam, The Netherlands, April 9th - 12th 2017. URL (as of

2020-11-19):

http://www.rexxla.org/events/2017/presentations/201704-RexxScript-Article.pdf

(BSF4)ooRexx and Java Web Servers (2021-03-17) 25/25

	1 Introduction
	2 The Apache Tomcat Java Based Web Server
	2.1 A Brief Overview of the Tomcat Directory Layout
	2.2 Serving a Client Request with a Java Servlet
	2.3 Serving a Client Request with a Java Server Page (JSP)
	2.4 The "ScriptTagLibs" Taglib Library and (BSF4)ooRexx

	3 Roundup and Outlook
	4 References
	[1] "Jakarta EE", Wikipedia (as of 2020-11-19): https://en.wikipedia.org/wiki/Jakarta_EE
	[2] "WAR (file format)", Wikipedia (as of 2020-11-19): https://en.wikipedia.org/wiki/WAR_(file_format)
	[3] "Apache Software Foundation" (as of 2020-11-19): http://www.apache.org/
	[4] "Apache Tomcat" (as of 2020-11-19): https://tomcat.apache.org/
	[5] "Specifications" (links to Java/Jakarta EE specifications in the Apache Tomcat project) (as of 2020-11-19): https://cwiki.apache.org/confluence/display/TOMCAT/Specifications
	[6] "Bean Scripting Framework (BSF)" (as of 2020-11-19): https://commons.apache.org/proper/commons-bsf/
	[7] "JSR 223: Scripting for the Java Platform " (as of 2020-11-19): https://jcp.org/en/jsr/detail?id=223
	[8] "Apache BSF Taglib Libraries, Deprecated" (as of 2020-11-19): https://svn.apache.org/repos/asf/jakarta/taglibs/deprecated/bsf/
	[9] "ScriptTagLibs" (as of 2020-11-19): https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/rgf/taglibs/
	[10] "Open Object Rexx (ooRexx)" (as of 2020-11-19): https://sourceforge.net/projects/oorexx/
	[11] "Bean Scripting Framework for ooRexx (BSF4ooRexx), a Bidirectional ooRexx-Java bridge" (as of 2020-11-19): https://sourceforge.net/projects/bsf4oorexx/
	[12] Flatscher R.G.: "Resurrecting REXX, Introducing Object Rexx", "ECOOP (RDL – Revival of Dynamic Languages – Workshop 10)", Nantes, France, July 3rd -7th 2006 (as of 2020-11-19): http://wi.wu.ac.at/rgf/rexx/misc/ecoop06/ECOOP2006_RDL_Workshop_Flatscher_Paper.pdf
	[13] Flatscher R.G.: "'RexxScript' – Rexx Scripts Hosted and Evaluated by Java (Package javax.script)", in: Proceedings of the “The 2017 International Rexx Symposium”, Amsterdam, The Netherlands, April 9th - 12th 2017. URL (as of 2020-11-19): http://www.rexxla.org/events/2017/presentations/201704-RexxScript-Article.pdf

