
René Vincent Jansen, Performance Architect, Department of Finance - Customs
The Netherlands
November 2021

Profiling Rexx with bpf and
perf

▪ BPF (Berkely Packet Filter) is part of the kernel

▪ Available in every modern Linux kernel

▪ Perf and bpftrace are tools for working with bpf

▪ ‘Kernel VM’ programs, can be made with bcc (hard), bpftrace (easier)

▪ Perf is a command that is useful for most profiling/sampling/tracing actions

BPF

Top
Every Linux has this

▪ Top

▪ NMON

▪ Perf top

Look at the system

NMON
This needs installing

It will also give you a performance
overview on the process level

BPF and Perf
BPF (“Berkeley Packet Filter”) and perf-events are
part of the Linux kernel. There is a ‘kernel VM’ that
enables one to write small programs to be
executed by the kernel in a controlled way.

perf, top and iostat are, nowadays, built on top of
that. Perf and bpftrace need to be installed.

bcc and bpftrace are ways to make these kernel
vm programs, the latter being modelled on awk.

▪ Good question!

▪ We want to know where the time is spent. Process-level is not enough to
give developers clues on what to speed up.

▪ Not every program is optimally designed and implemented

▪ I will present a short series of (5) examples to give you an idea how much
structures and algorithms can influence the performance of simple tasks

▪ [these are a bit contrived (running 10000 times) to show some mechanisms
clearly.]

Profile -why

№

Perf stat
We want to know more than the ‘time’

1

Perf stat

➜ bpfsprobes git:(master) ✗ perf stat ./dhrystone
Dhrystone(1.1) time for 50000000 passes = 4
This machine benchmarks at 11029411 dhrystones/second

 Performance counter stats for './dhrystone':

 2.743,86 msec task-clock # 1,000 CPUs utilized
 9 context-switches # 0,003 K/sec
 1 cpu-migrations # 0,000 K/sec
 54 page-faults # 0,020 K/sec
 10.893.802.753 cycles # 3,970 GHz
 29.661.436.752 instructions # 2,72 insn per cycle
 3.752.113.617 branches # 1367,460 M/sec
 71.092 branch-misses # 0,00% of all branches

 2,744234624 seconds time elapsed

 2,744167000 seconds user
 0,000000000 seconds sys

Demo

We have a text
KJV= King James Version of the
Bible

4521345 bytes (4.4 MB)

We try for 10000 times to find the
last verse of Revelations

The first attempts are not
particularly bright

We have a
Class
This is a container. We make an
instance of it for every line from
the text, and use PARSE to fill it.

Only the later programs in the
series are using it

First try: we
loop with I/O

➜ bpfsprobes git:(master) perf stat java -XX:+PreserveFramePointer Read_Text_Loop
Rev|22|21| The grace of our Lord Jesus Christ be with you all. Amen.~

 Performance counter stats for 'java -XX:+PreserveFramePointer Read_Text_Loop':

 54.821,02 msec task-clock # 1,009 CPUs utilized
 33.517 context-switches # 0,611 K/sec
 4.825 cpu-migrations # 0,088 K/sec
 74.516 page-faults # 0,001 M/sec
 214.181.041.636 cycles # 3,907 GHz
 634.317.494.047 instructions # 2,96 insn per cycle
 141.624.924.841 branches # 2583,406 M/sec
 1.353.808.195 branch-misses # 0,96% of all branches

 54,334276354 seconds time elapsed

 49,806402000 seconds user
 5,269838000 seconds sys

Second
Program: another
sort of Read loop
Here we are assigning the content
to an instance of
ChapterAndVerse

Apart from the construct, does
more or less the same. We read
only once. Notation-wise is the
base for the examples; it is much
shorter; also this is the
performance baseline.

➜ bpfsprobes git:(master) perf stat java -XX:+PreserveFramePointer Read_Text_Oneline

 Performance counter stats for 'java -XX:+PreserveFramePointer Read_Text_Oneline':

 312,48 msec task-clock # 2,012 CPUs utilized
 369 context-switches # 0,001 M/sec
 52 cpu-migrations # 0,166 K/sec
 15.988 page-faults # 0,051 M/sec
 1.195.562.392 cycles # 3,826 GHz
 1.440.566.467 instructions # 1,20 insn per cycle
 264.599.270 branches # 846,775 M/sec
 7.326.681 branch-misses # 2,77% of all branches

 0,155274554 seconds time elapsed

 0,289902000 seconds user
 0,024498000 seconds sys

Avoiding the I/O
We have an ArrayList

We add instances of
ChapterAndVerse

Now we read only once and loop
10000 times through this, until we
are at the end.

We are not looking or comparing
yet.

➜ bpfsprobes git:(master) perf stat java -XX:+PreserveFramePointer Read_Text_Oneline1
Rev 22 21 The grace of our Lord Jesus Christ be with you all. Amen.~

 Performance counter stats for 'java -XX:+PreserveFramePointer Read_Text_Oneline1':

 16.805,86 msec task-clock # 1,025 CPUs utilized
 6.341 context-switches # 0,377 K/sec
 908 cpu-migrations # 0,054 K/sec
 93.276 page-faults # 0,006 M/sec
 66.487.566.474 cycles # 3,956 GHz
 200.339.033.204 instructions # 3,01 insn per cycle
 36.499.595.263 branches # 2171,837 M/sec
 48.721.562 branch-misses # 0,13% of all branches

 16,398101426 seconds time elapsed

 16,710133000 seconds user
 0,136311000 seconds sys

Now look for
the right verse
in the ArrayList
We again loop through the
ArrayList that we filled once

But now we search for the book of
Revelations 22:21

Which is the last line we added to
the Arraylist

➜ bpfsprobes git:(master) perf stat java -XX:+PreserveFramePointer Read_Text_Oneline2
Rev 22 21 The grace of our Lord Jesus Christ be with you all. Amen.~

 Performance counter stats for 'java -XX:+PreserveFramePointer Read_Text_Oneline2':

 27.941,67 msec task-clock # 1,013 CPUs utilized
 6.797 context-switches # 0,243 K/sec
 1.083 cpu-migrations # 0,039 K/sec
 92.130 page-faults # 0,003 M/sec
 110.927.691.194 cycles # 3,970 GHz
 240.753.224.323 instructions # 2,17 insn per cycle
 46.301.682.611 branches # 1657,084 M/sec
 49.056.142 branch-misses # 0,11% of all branches

 27,572957882 seconds time elapsed

 27,810831000 seconds user
 0,176500000 seconds sys

What happens
when we want
an earlier line
So so the time spent into
searching in an Array is dependent
of the position of the target string.

➜ bpfsprobes git:(master) perf stat java -XX:+PreserveFramePointer Read_Text_Oneline3
Exo 20 17 Thou shalt not covet thy neighbour's house, thou shalt not covet thy neighbour's wife, nor his manservant, nor his maidservant, nor his ox, nor his ass, nor any
thing that is thy neighbour's.~

 Performance counter stats for 'java -XX:+PreserveFramePointer Read_Text_Oneline3':

 1.740,40 msec task-clock # 1,225 CPUs utilized
 923 context-switches # 0,530 K/sec
 161 cpu-migrations # 0,093 K/sec
 89.784 page-faults # 0,052 M/sec
 6.829.614.161 cycles # 3,924 GHz
 17.993.925.496 instructions # 2,63 insn per cycle
 3.395.732.302 branches # 1951,119 M/sec
 14.416.862 branch-misses # 0,42% of all branches

 1,420480527 seconds time elapsed

 1,646809000 seconds user
 0,101404000 seconds sys

Let’s redo this with
another structure,
the TreeMap
A TreeMap is a keyed structure in
which the keys and their values
are stored in a sorted way.

This means looking up the key can
be done by a binary search
algorithm, that is convently hidden
from us.

➜ bpfsprobes git:(master) perf stat java -XX:+PreserveFramePointer Read_Text_Oneline4
 The grace of our Lord Jesus Christ be with you all. Amen.~

 Performance counter stats for 'java -XX:+PreserveFramePointer Read_Text_Oneline4':

 612,42 msec task-clock # 2,402 CPUs utilized
 422 context-switches # 0,689 K/sec
 55 cpu-migrations # 0,090 K/sec
 29.785 page-faults # 0,049 M/sec
 2.354.285.302 cycles # 3,844 GHz
 2.807.428.519 instructions # 1,19 insn per cycle
 537.083.134 branches # 876,987 M/sec
 12.404.891 branch-misses # 2,31% of all branches

 0,254938162 seconds time elapsed

 0,566838000 seconds user
 0,048935000 seconds sys

Now try to find
an earlier verse
Because of binary search, this is
not quicker than looking for the
last verse.

➜ bpfsprobes git:(master) perf stat java -XX:+PreserveFramePointer Read_Text_Oneline5
 Thou shalt not covet thy neighbour's house, thou shalt not covet thy neighbour's wife, nor his manservant, nor his maidservant, nor his ox, nor his ass, nor any thing that is
thy neighbour's.~

 Performance counter stats for 'java -XX:+PreserveFramePointer Read_Text_Oneline5':

 617,96 msec task-clock # 2,451 CPUs utilized
 413 context-switches # 0,668 K/sec
 50 cpu-migrations # 0,081 K/sec
 29.095 page-faults # 0,047 M/sec
 2.381.035.553 cycles # 3,853 GHz
 2.768.066.794 instructions # 1,16 insn per cycle
 527.846.156 branches # 854,169 M/sec
 12.321.448 branch-misses # 2,33% of all branches

 0,252142547 seconds time elapsed

 0,535193000 seconds user
 0,085943000 seconds sys

№

sudo perf top
Because sometimes you cannot run programs in isolation, and need a broad picture
about what’s happening

2

The Dhrystone
benchmark
To generate some load for perf
top and see where its time is
spent.

The -Wno-imolicit-function-
declaration is only for the M1 Mac
because the source is so old and
clang does not like it. There are
no symbols or debug options
selected.

cc -Wno-implicit-function-declaration dhrystone.c -o dhrystone

perf top of the
functions within
a process
We see exactly which functions in
the program used the majority of
the processor cycles. This gives
us a handle on the optimising
process.

Now let’s run
our first java
program
The one with the loop

Very disappointing, isn’t is?

What happens here? We have
only addresses, no human-
readable symbols.

This is caused by the JIT process,
which does Just-In-Time
compiling to native (instruction set
architecture dependent) machine
code.

▪ https://github.com/jvm-profiling-tools/perf-map-agent

▪ Set JAVA_HOME

▪ cmake .

▪ make

Symbols to the rescue

https://github.com/jvm-profiling-tools/perf-map-agent

▪ java -XX:+PreserveFramePointer <your_class>

▪ sudo perf record -F 99 -p ‘pgrep java’ -g -- sleep 10

▪ ~/apps/perf-map-agent/bin/create-java-perf-map.sh ‘pgrep java’

▪ sudo perf script >out.perf

▪ But for now, we are going to look at perf top

Create a map with java-perf-map

Linux perf tools will expect symbols for code
executed from unknown memory regions
at /tmp/perf-<pid>.map. This allows
runtimes that generate code on the fly to
supply dynamic symbol mappings to be
used with the perf suite of tools.

Life is better
with symbols
The same program, but now it has
a usable mapping from addresses
to symbols, provided to us by the
JIT compiler.

We see all the time is spent in I/O,
in java/io/BufferedReader;::readLine

Let’s revisit this
one
We’ll run this through perf top

➜ bpfsprobes git:(master) perf stat java -XX:+PreserveFramePointer Read_Text_Oneline2
Rev 22 21 The grace of our Lord Jesus Christ be with you all. Amen.~

 Performance counter stats for 'java -XX:+PreserveFramePointer Read_Text_Oneline2':

 27.941,67 msec task-clock # 1,013 CPUs utilized
 6.797 context-switches # 0,243 K/sec
 1.083 cpu-migrations # 0,039 K/sec
 92.130 page-faults # 0,003 M/sec
 110.927.691.194 cycles # 3,970 GHz
 240.753.224.323 instructions # 2,17 insn per cycle
 46.301.682.611 branches # 1657,084 M/sec
 49.056.142 branch-misses # 0,11% of all branches

 27,572957882 seconds time elapsed

 27,810831000 seconds user
 0,176500000 seconds sys

Hmm
We see that most time is spent in
Rexx;::docompare and Rexx;::OpAdd

Why would that be?

Well, the compare is because of
the comparison of every ArrayList
element, which contains an
instance of ChapterAndVerse, to
the 3 strings.

The OpAdd is the loop counter. In
this case …

We don’t need
decimal loop
counters
I changed that as can be seen on
the right, using the DO … BINARY
block delimiter.

That alone shaves off about 20
seconds.

➜ bpfsprobes git:(master) perf stat java -XX:+PreserveFramePointer Read_Text_Oneline2b
Rev 22 21 The grace of our Lord Jesus Christ be with you all. Amen.~

 Performance counter stats for 'java -XX:+PreserveFramePointer Read_Text_Oneline2b':

 8.362,75 msec task-clock # 1,027 CPUs utilized
 680 context-switches # 0,081 K/sec
 55 cpu-migrations # 0,007 K/sec
 16.418 page-faults # 0,002 M/sec
 19.206.783.758 cycles # 2,297 GHz
 15.628.203.011 instructions # 0,81 insn per cycle
 3.228.597.088 branches # 386,069 M/sec
 9.766.935 branch-misses # 0,30% of all branches

 8,145946642 seconds time elapsed

 8,325632000 seconds user
 0,044008000 seconds sys

№

Profiling Rexx BIFs

3

SUBSTR BIF
Testcase
Note the Unicode testcases

SUBSTR*
Fastest execution recorded

(For cRexx, excluding RXC time)

4.72 msec ooRexx

1.36 msec BREXX

0.77 msec Regina

0.48 msec cREXX - Rexx Version

0.43 msec cREXX - RXAS version

* Unicode testcases skipped except for CREXX

CPU Profile of
ooRexx substr
1) We need to run this in a loop to
see significant CPU usage

2) The memory overhead might be
of that loop

3) Still, we clearly see the relative
CPU profile of the called functions

SUBSTR in
RXAS
Well, 3/4 of it

Based on algorithm in ANSI
standard

SUBSTR in
level B cREXX
.. for an impression, all the code is
in:
https://github.com/adesutherland/CREXX

The clarity of this, coupled with the
almost not measurable performance
difference, made us decide to
implement most BIF’s in Rexx.

(Which Peter subsequently did).

https://github.com/adesutherland/CREXX

№

CPS: The Clauses Per Second Benchmark
ARM is on the move

4

Date RexxCPS Hardware Software environment

---------- ---------- -------------------- ---------------------- ------ --- ---- ----

2021.10.28 23,774,392 M1 Mac ARM 64 Darwin ooRexx_5.0.0 6.05 14 Sep 2021

2015.03.06 19,413,819 IBM z13 CMS REXXC370 4.02 23 Dec 1999

2013.07.04 17,778,252 IBM zEC12 2827-789 CMS REXXC370 4.02 23 Dec 1999

2021.10.28 15,928,590 M1 Mac ARM 64 Unix Regina 3.9.3 5.00 5 Oct 2019

2012.01.01 14,766,746 Intel i5 2.5 GHz Win7 DosCrx1.0 5.00 22 Apr 1999

2021.08.30 14,418,411 iMac Apple Silicon M1 Darwin 6.05 12 Aug 2021

2011.06.00 14,126,688 IBM z196 2817-742 CMS REXXC370 4.02 23 Dec 1999

2020.06.14 12,500,000 Lenovo T540-15ICB Win10-64 ooRexx 4.2.0 6.04 22 Feb 2014

2020.01.27 11,494,253 Lenovo T540-15ICB Win10-64 Regina 3.9.3 5.00 5 Oct 2019

2011.06.08 10,135,135 Intel i7 4.7 GHz Win7 ooRexx 4.1.0 6.03 5 Dec 2010

2014.05.05 8,287,671 Pentium G3220 3 GHz Win7-64 Regina 3.7 5.00 ?

2014.01.08 7,665,816 Intel Xeon 3.5 GHz Win7 ooRexx 4.1.2 6.03 28 Aug 2012

2012.05.25 6,675,567 Intel i5 2.5 GHz Win7 ooRexx 4.1.0 6.03 5 Dec 2010

2012.03.26 6,192,687 Xeon 3.1GHz 4-way Linux jREXX 0.0.3 26 Mar 2012

2001.08.09 5,567,929 AMD Athlon 1.4 GHz DosCrx1.0 16 bit 5.0 2 Dec 1999

The latest from MFC’s Speleotrove

Platforms
Different platforms, different
scores

Need a performance regression
section on the RexxLA Jenkins
build machine.

The End. For the moment.

