
René Vincent Jansen, 34th International Rexx Language Symposium

Almere, 20230517

CREXX - Building a native 
executable



▪ With a native executable, it becomes possible to build 
a program that runs on a machine without any Rexx 
language tools installed


▪ Needs to have the same ISA and OS (later more)


▪ Speed: at runtime we need to do less


▪ (When you do not want to hand over source)

Why do this?



▪ Native with respect to the


▪ ISA


▪ Executable File Format

What is native



▪ Some important ones


▪ IA86_64


▪ AARCH64 (ARM64)


▪ RISC/V


▪ Z/ARCH (the mainframe)


▪ GPU's and other vector processors

Instruction set architecture (ISA)



▪ There is an interpreter that executes the RXVM instruction set


▪ Which is already compiled when we built the interpreter


▪ The Rexx byte code just jumps to these precompiled instructions


▪ The RXAS assembler source is compiled into RXVM code in .rxbin files

Tiered Compilation



Build Chain

source.rexx

compile: rxc source

source.rxas

assemble: rxas source

source.rxbin

run: rxvme source

pack: rxcpack source

source.c

native compile: gcc source

./source/ source.exe



mind the options


mind the import


simple say


function


expression

Simple Test



look at how the imported 
declaration is done


look how the expression is pre-
compiled

The RXAS



▪ This creates a C-program of a very peculiar nature


▪ Demonstration

The C Packer



▪ using the standard C/C++ compiler from GNU, 


▪ gcc (which is an alias for clang on the mac) this large C program is compiled 
and linked into a native executable, 


▪ and very possibly optimised even more.

Using GCC



in bash: blèèech!

This is the 
current build 
chain for native



▪ can be on the PATH environment variable


▪ or started from current dir with ./

Running the executable

./



▪ Currently the executable file is quite big (±600-700K)


▪ This can be compressed by several utilities


▪ but because of the dependency, we will look into that ourselves


▪ but not with great haste


▪ depending on 3rd party products like UPX turned out not to be a great idea

Size considerations



▪ LLVM


▪ FPGA


▪ Vectorizing


▪ Actually Portable Executables (APE)

Interesting Diversions



▪ LLVM is a construction set for generation of native code by compiler 
backends


▪ Extensive suite with lots of optimizations for different hardware


▪ Able to target most current hardware, including Z/Arch (the mainframe)


▪ The plan is to build an rxas --> llvm translator

The LLVM future



▪ Rexx in hardware! 


▪ Why not?


▪ This will need significant free time from someone(s)

RXAS FPGA



▪ Some vector instructions will be already used on current IA_64 and ARM 
architectures


▪ Sometimes the compiler still needs a bit of help


▪ NVIDIA and other GPU-like processors


▪ Would also need time and love of motivated individuals

Vectorizing hardware



▪ This is possible and demonstrated: search for Cosmopolitan


▪ Would be an interesting distribution format

APE: Actually Portable Executable



Please be in touch

(and thanks for your attention!)

https://github.com/adesutherland/CREXX

https://github.com/adesutherland/CREXX

