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Challenges for Beginners

Choosing a Language is Difficult!

● Amount: Wikipedia lists 691 different programming languages 
(“List of programming languages,” 2023)

● Preference: “Experts” usually state preferences
● Popularity: Frequency of online searches (PYPL, 2023)

● Dynamic: 
– Time: (“Data is Beautiful,” 2019)

● 1980s (Fortran, Pascal, Ada); 1990s (C, C++); 2000s (Java, PHP); 2020s (Python)
– Field: (Berkely Extension, 2023)

● E-commerce (Java); OS (Rust); SysAdmins (Perl); Data science (Python), ...

Beginners constantly question their choices → change language 
frequently without being productive



3 Till Winkler

Challenges for Beginners

Learning a Language is Difficult!

● Excessive  amount  time necessary to grasp syntax—here  referring 
 to  C  and VisualBasic.NET (Al-Imamy et al., 2006)
– The C-style syntax has influenced many languages (e.g. Java, PHP, Go or Swift), 

but is challenging for beginners (Denny  et  al.,  2011;  Stefik  &  Siebert, 2013)

● Programming Classes: High dropout rates and poor outcomes
– Students cannot create loops after several semesters (Robins et al., 2003)
– Become disillusioned with programming (Garner, 2002) 

What makes learning a programming language so difficult?
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● Human expertise and problem-solving skills, are based on knowledge 
stored as so-called schemata in our long-term memory (Sweller & Van 

Merriënboer, 2005; Garner, 2002) 
– Schemata: Any exiting knowledge that can be treated as a single element or piece of 

information—e.g. word, pattern, formula, or concept... (Garner, 2002)

Cognitive Load Theory

Human Expertise and Problem-solving Skills

Expert: Recognizes pattern 
and “automatically” retrieves solution

Beginner: Needs to “actively” 
consider different moves/element
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● Learning: Disconnected pieces/elements of 
information are bundled/chunked into a more 
complex schemata (Paas et al., 2003)
– Requires active thinking → free working memory 

capacity (Sweller & Van Merriënboer, 2005)
– Schemata can be treated as a single element in 

working memory

● Goal of teaching: (Sweller & Van Merriënboer, 2005)
– Enable the construction of more complex schemata
– Facilitate their automation through practice

Cognitive Load Theory

Learning and Teaching

Image Source: https://149637512.v2.pressablecdn.com/wp-content/uploads/Screen-Shot-2017-11-15-at-7.00.05-PM.png
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Cognitive Load Theory

Working Memory as a Bottle Neck, 1
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(schemata) for a duration between 10-15 seconds
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● Examples:
– Learning Digits:

● 2 – 0 – 0 – 3 – 2 – 0 – 0 – 4  → individually is hard!
● 200 – 3 – 200 – 4 → chunking is easier!
● 20 – 03 – 2004 → with knowledge is easiest! (25th anniversary)

– Learning a Natural Language:
● Hello—beloved—world—my → learning vocabulary (chunks) is fairly easy!
● Hello, my beloved wold! → learning grammar / equivalent to syntax is hard!

– especially if: words and their semantic is new (no previous knowledge)
– especially since: interaction between needs to be considered (adds new elements)

Cognitive Load Theory

Working Memory as a Bottle Neck, 2

Building on prior knowledge, reducing the number of elements and 
their interactivity.
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● Literal aspects rooted in English or Math are perceived as easier 
(Stefik & Siebert, 2013):
– REPEAT or LOOP is easier than FOR
– Single equal sign (“=”) is easier than double equal sign (“==”)

● Abbreviations 
– Python (“forced cleverness”): 

● .strip(), .lstrip()
– Beginner has to learn what “l” stands for
– new: “l” + known: “strip” + context

– ooRexx:
● ~strip(), ~strip(“leading”), ~strip(“l”)

– Beginner can use “leading” and can later switch to “l”
– 2 x known: “strip” + “leading” + context

Language Characteristics

Build on Previous Knowledge – Some Examples, 1
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Python ooRexx

Var = 1
if Var == 1:
    print("Yes")
else:
    print("No")

Var = 1
if Var = 1 then say "Yes"           
    else say "No"

● Need for different equal signs
● otherwise: Syntax errors

● Indentions have semantic meaning 
● clever: reduce elements (do, end, ...)
● but: exiting knowledge is not applicable!

● Single equal sign can be used
● as known from Math

● Free-form Characteristic
● as natural language
● exiting knowledge is applicable!

Language Characteristics

Build on Previous Knowledge – Some Examples, 2
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ooRexx
(Case Insensitivity)

Oranges = 1
print(Oranges)
print(oranges) #NameError: name 
'oranges' is not defined. Did you mean: 
'Oranges'?

Oranges = 1
say Oranges
SaY oranges

● Example: Variables 
● Oranges and oranges are here 

two different “things”
● Existing knowledge from natural 

language is not applicable!

● Example: Variables
● Oranges and oranges are the 

same “thing”
● Existing knowledge from natural 

language is applicable!
● Applies to any aspect of the language

Python 
(Case Dependence)

Language Characteristics

Build on Previous Knowledge – Some Examples, 3
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● Build-in functions and information search

Language Characteristics

Reduce Interactivity – Some Examples, 1

import random
print(random.randint(0,9))

say Random(0,9)

● Beginners need to consider more 
interacting elements
● e.g. import must happen at the 

beginning, otherwise:
● # NameError: name 'random' is 

not defined
● Errors/messages should be 

understandable (McIver & Conway, 
1996)

● Beginners need to consider less 
interacting elements

● All knowledge in a single reference 
manual → reduces cognitive load by 
minimizing search (Sands, 2019)
● Good Manual: syntax diagram, 

description, working example

Python ooRexx
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Roundup

● Working memory capacity is very limited → ooRexx language 
characteristics reduce cognitive burden/facilitate learning
– Free-form and case-insensitive characteristics
– ooRexx makes existing knowledge applicable (e.g. Math, literal English)
– Powerful build-in functions all in one manual
– Understandable error messages 

● Be consistent with abbreviations and also allow long derivatives
– Example: String Class Methods

● ~changeStr not possible: ~changeString
● ~makeString not possible: ~makeStr

● Thanks for Listening: <till.winkler@wu.ac.at>

mailto:till.winkler@wu.ac.at
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