
Vienna University of Economics and Business Welthandelsplatz 1, D2-C ▪ ▪ A-1020 Vienna Till Winkler

Department of Information Systems
and Operations Management

Roundup
Language

Characteristics
Cognitive

Load Theory
Challenges
for Beginners

REXX from a Cognitive Load Perspective
The 34th International Rexx Symposium

Choosing,
Learning

Learning and Teaching,
Working Memory

Free-form,
Case-insensitive,

Build-in Functions

2 Till Winkler

Challenges for Beginners

Choosing a Language is Difficult!

● Amount: Wikipedia lists 691 different programming languages
(“List of programming languages,” 2023)

● Preference: “Experts” usually state preferences
● Popularity: Frequency of online searches (PYPL, 2023)

● Dynamic:
– Time: (“Data is Beautiful,” 2019)

● 1980s (Fortran, Pascal, Ada); 1990s (C, C++); 2000s (Java, PHP); 2020s (Python)
– Field: (Berkely Extension, 2023)

● E-commerce (Java); OS (Rust); SysAdmins (Perl); Data science (Python), ...

Beginners constantly question their choices → change language
frequently without being productive

3 Till Winkler

Challenges for Beginners

Learning a Language is Difficult!

● Excessive amount time necessary to grasp syntax—here referring
 to C and VisualBasic.NET (Al-Imamy et al., 2006)
– The C-style syntax has influenced many languages (e.g. Java, PHP, Go or Swift),

but is challenging for beginners (Denny et al., 2011; Stefik & Siebert, 2013)

● Programming Classes: High dropout rates and poor outcomes
– Students cannot create loops after several semesters (Robins et al., 2003)
– Become disillusioned with programming (Garner, 2002)

What makes learning a programming language so difficult?

4 Till Winkler

● Human expertise and problem-solving skills, are based on knowledge
stored as so-called schemata in our long-term memory (Sweller & Van

Merriënboer, 2005; Garner, 2002)
– Schemata: Any exiting knowledge that can be treated as a single element or piece of

information—e.g. word, pattern, formula, or concept... (Garner, 2002)

Cognitive Load Theory

Human Expertise and Problem-solving Skills

Expert: Recognizes pattern
and “automatically” retrieves solution

Beginner: Needs to “actively”
consider different moves/element

5 Till Winkler

● Learning: Disconnected pieces/elements of
information are bundled/chunked into a more
complex schemata (Paas et al., 2003)
– Requires active thinking → free working memory

capacity (Sweller & Van Merriënboer, 2005)
– Schemata can be treated as a single element in

working memory

● Goal of teaching: (Sweller & Van Merriënboer, 2005)
– Enable the construction of more complex schemata
– Facilitate their automation through practice

Cognitive Load Theory

Learning and Teaching

Image Source: https://149637512.v2.pressablecdn.com/wp-content/uploads/Screen-Shot-2017-11-15-at-7.00.05-PM.png

 + =

New New

New Existing

more
complex

schemata

more
complex

schemata
 + =

6 Till Winkler

Cognitive Load Theory

Working Memory as a Bottle Neck, 1

Attention

Working
Memory

Long-term
Memory

Encoding

Retrieval
New Information

Elements
Existing

Schemata
+

=

New:
Terminology,

Syntax, Concepts

Transfer-able:
English,

Mathematics,
Biology, ...

Chunking

Working Memory can only handle 7 (± 2) elements
(schemata) for a duration between 10-15 seconds

7 Till Winkler

● Examples:
– Learning Digits:

● 2 – 0 – 0 – 3 – 2 – 0 – 0 – 4 → individually is hard!
● 200 – 3 – 200 – 4 → chunking is easier!
● 20 – 03 – 2004 → with knowledge is easiest! (25th anniversary)

– Learning a Natural Language:
● Hello—beloved—world—my → learning vocabulary (chunks) is fairly easy!
● Hello, my beloved wold! → learning grammar / equivalent to syntax is hard!

– especially if: words and their semantic is new (no previous knowledge)
– especially since: interaction between needs to be considered (adds new elements)

Cognitive Load Theory

Working Memory as a Bottle Neck, 2

Building on prior knowledge, reducing the number of elements and
their interactivity.

8 Till Winkler

● Literal aspects rooted in English or Math are perceived as easier
(Stefik & Siebert, 2013):
– REPEAT or LOOP is easier than FOR
– Single equal sign (“=”) is easier than double equal sign (“==”)

● Abbreviations
– Python (“forced cleverness”):

● .strip(), .lstrip()
– Beginner has to learn what “l” stands for
– new: “l” + known: “strip” + context

– ooRexx:
● ~strip(), ~strip(“leading”), ~strip(“l”)

– Beginner can use “leading” and can later switch to “l”
– 2 x known: “strip” + “leading” + context

Language Characteristics

Build on Previous Knowledge – Some Examples, 1

9 Till Winkler

Python ooRexx

Var = 1
if Var == 1:
 print("Yes")
else:
 print("No")

Var = 1
if Var = 1 then say "Yes"
 else say "No"

● Need for different equal signs
● otherwise: Syntax errors

● Indentions have semantic meaning
● clever: reduce elements (do, end, ...)
● but: exiting knowledge is not applicable!

● Single equal sign can be used
● as known from Math

● Free-form Characteristic
● as natural language
● exiting knowledge is applicable!

Language Characteristics

Build on Previous Knowledge – Some Examples, 2

10 Till Winkler

ooRexx
(Case Insensitivity)

Oranges = 1
print(Oranges)
print(oranges) #NameError: name
'oranges' is not defined. Did you mean:
'Oranges'?

Oranges = 1
say Oranges
SaY oranges

● Example: Variables
● Oranges and oranges are here

two different “things”
● Existing knowledge from natural

language is not applicable!

● Example: Variables
● Oranges and oranges are the

same “thing”
● Existing knowledge from natural

language is applicable!
● Applies to any aspect of the language

Python
(Case Dependence)

Language Characteristics

Build on Previous Knowledge – Some Examples, 3

11 Till Winkler

● Build-in functions and information search

Language Characteristics

Reduce Interactivity – Some Examples, 1

import random
print(random.randint(0,9))

say Random(0,9)

● Beginners need to consider more
interacting elements
● e.g. import must happen at the

beginning, otherwise:
● # NameError: name 'random' is

not defined
● Errors/messages should be

understandable (McIver & Conway,
1996)

● Beginners need to consider less
interacting elements

● All knowledge in a single reference
manual → reduces cognitive load by
minimizing search (Sands, 2019)
● Good Manual: syntax diagram,

description, working example

Python ooRexx

12 Till Winkler

Roundup

● Working memory capacity is very limited → ooRexx language
characteristics reduce cognitive burden/facilitate learning
– Free-form and case-insensitive characteristics
– ooRexx makes existing knowledge applicable (e.g. Math, literal English)
– Powerful build-in functions all in one manual
– Understandable error messages

● Be consistent with abbreviations and also allow long derivatives
– Example: String Class Methods

● ~changeStr not possible: ~changeString
● ~makeString not possible: ~makeStr

● Thanks for Listening: <till.winkler@wu.ac.at>

mailto:till.winkler@wu.ac.at

13 Till Winkler

References
● List of programming languages. (2023, May 27). In Wikipedia. https://en.wikipedia.org/wiki/List_of_programming_languages.

● PYPL. (2023). PYPL PopularitY of Programming Language. Retrieved from https://pypl.github.io/PYPL.html.

● Data is Beautiful. (2019, October 7). Most Popular Programming Languages 1965 – 2019 [Video file]. Youtube. https://www.youtube.com/watch?v=Og847HVwRSI

● Berkely Extension. (2023). 11 Most In-Demand Programming Languages. Retrieved from https://bootcamp.berkeley.edu/blog/most-in-demand-programming-
languages/

● Al-Imamy, S., Alizadeh, J., & Nour, M. A. (2006). On the development of a programming teaching tool: The effect of teaching by templates on the learning process.
Journal of Information Technology Education: Research, 5(1), 271-283.

● Denny, P., Luxton-Reilly, A., Tempero, E., & Hendrickx, J. (2011, June). Understanding the syntax barrier for novices. In Proceedings of the 16th annual joint conference
on Innovation and technology in computer science education (pp. 208-212).

● Stefik, A., & Siebert, S. (2013). An empirical investigation into programming language syntax. ACM Transactions on Computing Education (TOCE), 13(4), 1-40.

● Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and discussion. Computer science education, 13(2), 137-172.

● Garner, S. (2002). Reducing the cognitive load on novice programmers (pp. 578-583). Association for the Advancement of Computing in Education (AACE).

● Sweller, J., & Van Merriënboer, J. J. G. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review,
53(3), 147-177.

● Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational psychologist,
38(1), 63-71.

● McIver, L., & Conway, D. (1996, January). Seven deadly sins of introductory programming language design. In Proceedings 1996 International Conference Software
Engineering: Education and Practice (pp. 309-316). IEEE.

https://en.wikipedia.org/wiki/List_of_programming_languages
https://pypl.github.io/PYPL.html
https://www.youtube.com/watch?v=Og847HVwRSI

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13

