
Proposing ooRexx and BSF4ooRexx for Teaching Programming and Fundamental
Programming Concepts

Flatscher, Rony G.

Published in:
2023 Program Guide ISECON

Published: 19/04/2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Flatscher, R. G. (2023). Proposing ooRexx and BSF4ooRexx for Teaching Programming and Fundamental
Programming Concepts. In 2023 Program Guide ISECON: Information Systems Education Conference (pp. 89-
102)

Download date: 16. May 2023

https://research.wu.ac.at/en/publications/c6de543b-01e1-4fad-a6ee-874930f33723

Proposing ooRexx and BSF4ooRexx for Teaching
Programming and Fundamental Programming

Concepts

Rony G. Flatscher
rony.flatscher@wu.ac.at

Information Systems and Operations Management
Wirtschaftsuniversität Wien (WU)

Welthandelsplatz 1, A-1020 Wien, Austria

Abstract

After 30 years of experimenting teaching programming for interested information systems
and business administration students with different programming languages it has been
experienced that using the combination of ooRexx and BSF4ooRexx (an ooRexx-Java
bridge) allows the students to learn and apply the most important concepts in a teaching
load of eight European Credit Transfer and Accumulation System credits. The article briefly
introduces ooRexx and BSF4ooRexx with examples that demonstrate the pseudo-code
characteristics and power that this combination allows for. The developed teaching concepts
with this infrastructure allows the students to become able to program Microsoft Office and
Apache OpenOffice after only two months and exploit any Java class library and any Java
application application programming interfaces after another two months.

Keywords: programming, learning, introduction, REXX, ooRexx, BSF4ooRexx, Java.

1. INTRODUCTION

Teaching business administration students
programming skills such that they become
able to assess and to exploit information
technologies for business purposes has
been a continuous challenge. It can be
observed that most academic institutions
use programming languages that are
considered to be popular and hence
important such that Visual Basic, Java,
JavaScript, C++, Python get employed as
the "first programming language" students
learn.

Over the past 30 years the author has
experimented with different programming
languages and teaching concepts in order
to become able to teach business
administration students programming in a

single semester (four months) in four hours
lectures (teaching load of eight European
Credit and Transfer System – ECTS -
credits). It has become possible with using
ooRexx in combination with BSF4ooRexx
(an ooRexx-Java bridge) to enable the
students to understand the most important
fundamental programming concepts after
four installments. They become able to
program any Windows application that
supports COM/OLE like MS Office or Apache
OpenOffice/LibreOffice after another three
installments. In the second half of the
lecture, the students learn, understand and
exploit Java and any Java class libraries
such that they become able to successfully
program graphical user interfaces (GUIs)
taking advantage of the Java classes in the
respective Java packages java.awt,
javax.swing, and javafx. A single

installment is sufficient to teach the
fundamental concepts of socket-
programming ("Internet"-programming,
Java package java.net) including SSL/TLS
(Java package javax.net.ssl). Parsing XML
text with SAX (Java package org.xml.sax)
and DOM (Java package org.w3c.dom) are
taught in another installment. Becoming
able to program all Apache
OpenOffice/LibreOffice office modules via
their Java application programming
interfaces needs another installment, the
acquired knowledge can be applied on
Windows and non-Windows operating
systems such that even students with Apple
or Linux computers become able to take
advantage of these popular open-source
office packages on their preferred platform.

This has become possible after trying out
the REXX programming language in one
semester and observing that the students
had practically no conceptual problem with
that language such that the lecture could
cover considerably more programming
concepts than was possible with Visual
Basic or Java. With its successor ooRexx,
the object-oriented paradigm has been
made available and replaced REXX in the
subsequent semester. The Windows version
of ooRexx supports COM/OLE and could be
used to teach the architecture and allow the
business administration students to exploit
this infrastructure, enabling them to
program the different components of
Microsoft Office like Excel, Word, but also
open-source office packages like Apache
OpenOffice or LibreOffice.

To enable the students to also interact and
exploit Java, an ooRexx-Java library named
BSF4ooRexx got developed over the past
20 years that camouflages Java as the
caseless, message-based ooRexx
programming language, such that the
students become able to directly apply their
learned ooRexx skills to any Java class
library and any application that offers Java-

based APIs. In addition, BSF4ooRexx makes
it possible to create programs that run on
Windows, but due to employing Java the
same programs can be run on Linux or
Apple computers that business application
students possess.

As the programming languages REXX
(section 2. REXX) and ooRexx (section 3
ooRexx) are barely known they get briefly
introduced and demonstrated with nutshell
examples such that the reader becomes
able to get a brief overview of the language
and how such programs look like,
sometimes almost like self-documentary
pseudo-code. After sections 2-REXX and 3-
ooRexx, section 4-BSF4ooRexx gets briefly
introduced and demonstrated, making it
possible to assess this ooRexx-Java bridge.

2. REXX

The programming language REXX got
developed at IBM and released in 1979 for
IBM mainframes. The language's designer,
Mike F. Cowlishaw, intentionally devised the
language to be easy to learn, small and
"human centric". In the 80s REXX was
picked by IBM as the strategic scripting
language for all of its operating systems
("SAA, System Application Architecture").
In the 90s the REXX programming language
was used outside of IBM, e.g., as the
scripting language for the Amiga operating
system, and commercial as well as open-
source versions of REXX got created.

REXX (Cowlishaw, 1990; Flatscher, 2013;
Fosdick, 2005) is a typeless language
(everything is considered a string) symbols
are caseless (before executing an
instruction everything outside of quotes
gets uppercased internally), whitespace can
be used to format a program as the writer
wishes.

There are basically three instruction types:
assignment instruction, keyword instruction
and command instruction. Figure 1 depicts
a REXX program that consists of an
assignment, the keyword instructions "do",
"say", "if", "end" and a command that
causes a file to be copied via the operating
system. Figure 2 depicts the output of
running the program in Figure 1.

Keyword instructions in REXX are English
words that convey the purpose for which
they got defined. As a result, REXX
programs are easy to understand and look
sometimes almost like pseudo-code.

Command instructions make it easy to
interface with the operating system, but
also with applications that implement the
Rexx command handler interface as was
the case on IBM mainframes, e.g., for
editors. Commands that interface with the
operating system can invoke any program
which will return a return code to the
operating system indicating success or
failure and which will be handed over to the
REXX interpreter which makes it directly
available via the REXX variable named RC.

As can be seen, a beginner does not have
to learn and understand concepts like strict

types and consequences if strict types are
not adhered to. Also variables need not be
declared, one merely uses them whenever
needed. There are no errors incurred by
mismatching case as in REXX symbols like
"call", "cAlL" or "CALL" convey the same
meaning and as such are regarded to be
the same, nor with indenting white space
"wrongly". In other words one can save a
lot of precious time of lecturing that can be
used for teaching additional important
programming concepts.

3. OOREXX

IBM created in the 90s an object-oriented
successor to REXX, named "Object REXX",
which was able to execute object oriented
as well as "classic" REXX programs. This
was first released with IBM's "OS/2 Warp"
in 1994. In 2004 IBM handed the source
code over to the non-profit special interest
group "Rexx Language Association
(RexxLA)" which has been open-sourcing
and enhancing the language under the
name "open object Rexx (ooRexx)" for all
important operating systems (Flatscher,
2013; ooRexx, 2023).

ooRexx was influenced by SmallTalk and as
a result implements among other things its
important message paradigm that Alan
Kaye (Wikipedia, 2023) characterizes: “I'm
sorry that I long ago coined the term
"objects" for this topic because it gets many
people to focus on the lesser idea. The big
idea is "messaging".”

Unlike SmallTalk ooRexx has an explicit
message operator (the tilde, ~). The
paradigm is easy to understand for
beginners: an object (a.k.a. value or
instance) is like a living thing. A
programmer sends it a message that
denotes the name of the method routine
the object should invoke on behalf of the
programmer, supplies any arguments and
receives any value/object the method
routine returns." This explanation suffices
to have the students understand easily the

a="Hello, world" /* assignment */

do i=1 to 3 /* a loop */
 say "... round #" i":" a
end

 /* command, will have a return code */
"copy file1.txt file1.txt.bkp"
if rc<>0 then /* variable RC set by REXX */
 SAY "Command's return code:" rc

... round # 1: Hello, world

... round # 2: Hello, world

... round # 3: Hello, world
The system cannot find the file specified.
Command's return code: 1

Figure 1: A REXX program

Figure 2: Output of running program in Figure 1

concepts of insulation (only the object can
directly access its methods) and inheritance
(the object searches the method routine by
the name of the received message and if
not found in its own class then the object
will lookup all its superclasses).

Like any other object-oriented language
ooRexx comes with a predefined
classification tree, one of its classes being
the "String" class. Despite having different
types the language is still dynamically
typed, such that variables or arguments do
not have to be strictly typed. This eases
interaction with objects tremendously for
the learning student.

In addition ooRexx adds a fourth instruction
type, "directive instruction" which takes
effect at "setup time": an ooRexx program
that gets executed is first checked for
syntax errors (checking phase). If directive
instructions exist in the program (led-in
with two colons and placed at the end of a
program) they all get first carried out by
ooRexx (setup phase) before the program
gets executed starting with the first
instruction at the top of the program
(execution phase).

Among other things directives allow for
easy definition of classes, their attributes
and method routines (behaviour).

Figure-3-1a depicts an ooRexx program
that can be rather easily understood
without even knowing much about the
language. The ::CLASS, ::ATTRIBUTE and
::METHOD directives define a class with
attributes and methods. The program
creates two persons of that class, exploiting
a constructor to ease initializing the
attributes. In addition, the ability to
increase the salary is defined in the
increaseSalary method routine.

The message paradigm of ooRexx in
Figure 3 (Appendix A) can be seen by
spotting the message operator ~. Sending
the NEW message to the class Person (a
class can be addressed by prepending its
name with a dot) creates and returns an
instance (a.k.a. object, value). The NEW

method routine will always send the INIT
message to its created object and supply to
it any arguments it received itself in the
same order. Subsequently, messages get
sent to the instances to query or change
attribute values and to have the
increaseSalary method routine invoked.
Figure 4 (Appendix A) depicts the output of
running the program in Figure 3.

The Windows version of ooRexx supports
the Windows COM/OLE (Component Object
Model/Object Linking and Embedding)
infrastructure which gets employed by
many Windows applications including
Microsoft Office and Apache OpenOffice.
Students need not know any technical
implementation details to exploit this
infrastructure, just the documentation of
the APIs that are made available via
COM/OLE.

Figure 5 demonstrates an ooRexx program
that interacts with MS Office's Excel, the
spreadsheet program. The ooRexx proxy
class "OLEObject" is capable of instantiating
any Windows COM/OLE class and assigns it
to an instance of "OLEObject", a proxy
object. Sending the proxy object messages
will cause the respective Windows method
to be invoked by it. Any necessary type
conversions (marshalling) for arguments or
for return values will be carried out by
"OLEObject" transparently such that the
ooRexx programmer does not need to be
aware of any of its implementation details.

The program in Figure 5 creates titles with
three European country names supplied in
an ooRexx array, defines a routine
createRows which generates numeric values
using the built-in function
random(min,max) in a two dimensional
array which gets returned and is used to
assign the respective values to the Excel
spreadsheet. Figure 6 (Appendix A) depicts
the output of running the program in
Figure 5 (Appendix A).

It is interesting to note that indeed there is
no knowledge necessary about the technical
implementation of COM/OLE in Windows or

ooRexx. It is sufficient to merely send
messages to the (Windows) proxy objects
which will search and invoke the respective
Windows methods. For ooRexx
programmers this is intuitive as it follows
the basic ooRexx message paradigm and it
does not really matter whether the
receiving object is an ooRexx object or a
proxy for a Windows object as is the case
here.

Not needing any time to explain the
technical implementation details for
adhering to strictly typed Windows
COM/OLE arguments and return values
allows one to teach many more concepts
than would be possible otherwise. Or put in
other words: beginners would be
overwhelmed if they would have to
understand types like VT_EMPTY, VT_CY,
VT_I1, VT_BSTR etc. in order to become
able to interact with COM/OLE-Windows
programs.

4. BSF4OOREXX

In 2000, more than twenty years ago, the
need for an interface between REXX and
Java caused the creation of the BSF4Rexx
project which later was adapted to ooRexx
and consequently renamed to BSF4ooRexx
(BSF4ooRexx, 2023; Flatscher, 2010;
Flatscher, 2022a). The original motivation
was to allow OS/2 REXX programmers to
take advantage of Java and by employing
Java to make such programs able to run
unchanged on Windows (and Unix) as it
was foreseeable that over time the OS/2
customers would migrate to Windows and
other platforms.

Over the course of twenty years
BSF4ooRexx has turned into a full-fledged,
bi-directional ooRexx-Java bridge that
allows one to send ooRexx messages to
Java objects, but also allows Java to send
messages to ooRexx objects. One of the
implications is that it is possible to
implement abstract Java methods in
ooRexx empowering ooRexx programs to

take part, e.g., in all Java callback patterns.
To enable ooRexx programmers to interact
from ooRexx with Java the ooRexx program
(package) named "BSF.CLS" camouflages
Java as ooRexx by defining a proxy class
named "BSF" which is able to proxy any
Java class.

The "BSF" proxy class has all means of
BSF4ooRexx available to it, such that it is
able to search for Java methods by the
name of the received message, convert
(marshall) transparently the arguments to
the needed Java types, invoke the method
and convert any Java result to ooRexx. The
"::requires BSF.CLS" directive instruction
can be used to have ooRexx set up the
ooRexx-Java bridge in the setup phase.

Figure 7 (Appendix B) depicts a simple
ooRexx program that uses two Java swing
GUI classes, "JFrame" and "JLabel" as if
they were ooRexx classes. The JFrame
object as well as the JLabel object are
represented as ooRexx proxy objects which
understand ooRexx messages. The ooRexx
program waits for the user to press return
on the keyboard before ending the program
at the end. Figure 8 (Appendix B) depicts
the output of running the program in
Figure 7.

Like in the case of the proxy class
"OLEObject" which bridges ooRexx and
Windows, the proxy class "BSF" bridges
ooRexx with Java. There is no knowledge
necessary about the technical
implementation of the ooRexx-Java bridge,
it is sufficient to merely send messages to
the (Java) proxy objects which will search
and invoke the respective Java methods.
For ooRexx programmers this is intuitive as
it follows the basic ooRexx message
paradigm and it does not really matter
whether the receiving object is an ooRexx
object or the proxy for a Java object as is
the case in Figure 7.

ooRexx programmers still need to learn
about the Java classes, their defined fields
and defined methods in order to become
able to formulate the necessary messages

with the appropriate arguments. As is the
case for Java programmers an ooRexx
programmer can take advantage of the
Java "JavaDocs" which makes all of the
Java documentation available and
researchable via the Internet! It is
therefore not necessary to learn the Java
syntax in order to exploit Java classes.

Interestingly, there is only one installment
(four hours) necessary to teach the
necessary fundamental Java concepts from
a bird eye's view and enable the business
administration students to immediately take
full advantage of Java thereafter.

An interesting side-effect of the ooRexx-
Java bridge is, that all ooRexx programs
that take advantage of Java are able to run
unchanged on all supported operating
systems like Windows, MacOS, and Linux.

With the advent of BSF4ooRexx850 beta it
has become quite easy to implement Rexx
command handlers in Java. A showcase is
the included JDOR (Java2D for ooRexx)
Rexx command handler (Flatscher, 2022b)
which makes it possible to exploit all of
Java2D using simple Rexx commands,
which consist of strings. Figure 9 (Appendix
B) depicts a Java program from an
introduction into Java game programming,
2D graphics, Java2D and Images (Chuan,
2008). The Java program from “2.2 Affine
Transform
(java.awt.geom.AffineTransform)” applies
Java2D AffineTransform operations to a
Polygon shape, Figure 10 (Appendix B)
shows the equivalent solution with JDOR
Rexx commands that creates the Figure 11
(Appendix B). As can be seen, the Rexx
solution is more compact and easier to
comprehend than the Java solution.

5. BRIEF OVERVIEW OF THE

DEVELOPED SYLLABUS

The lecture allows information systems and
business administration students to learn
programming within a single semester (four

months) with a teaching load of eight ECTS
(European Credit Transfer System) credits
which translates to 200 hours of net work
including the weekly four contact hours.
There are between 13 and 15 installments
per semester, depending on the number of
holidays where no teaching can take place
(Flatscher et al., 2021).

The students are organized in groups of two
students who get weekly homework
assignments of two small programs that
they are supposed to develop together and
which employ concepts taught in the
respective installment. In the middle and at
the end of the semester they need to
propose and implement a little project as
an additional assignment in which they
apply the learned concepts and acquired
skills.

Brief overview of the weekly four hour
installments (Flatscher, 2023a, 2023b):

• Introduction to the fundamental
concepts of programming including
condition (exception) handling,
parsing of text, the object-oriented
and message paradigm: four
installments.

• Applying the learned concepts to
Windows and Windows programs,
three installments: Windows
registry, introduction to COM/OLE
and MS Office, applying Rexx
command instructions to take
advantage of curl (grabbing and
analyzing web pages).

• Introduction to Java from a bird
eye's view, most important concepts
to interact with Java: one
installment.

• The remaining five to six
installments focus on teaching
fundamental concepts of GUI-
programming (taking advantage of
Java's awt, swing and JavaFX),
socket ("Internet") programming
(exploiting Java's socket and secure
socket layer classes), processing
XML and HTML files (SAX, DOM) and
OpenOffice/LibreOffice programming

using their Java application
programming interfaces (APIs).

For business administration students this
opens interesting perspectives like
becoming able to program any application
system for which a Java API got defined for,
or to have become able to take advantage
of any (portable) Java class library that
exists on any operating system.

6. CONCLUSIONS

After 30 years of experimenting with
different programming languages to teach
business administration students
programming from scratch it has become
clear that it makes a big difference which
programming language one choses for
teaching beginners. Using currently
"popular" or "important" programming
languages like Python or Java for teaching
programming to beginners has the problem
that their case-dependent, strictly typed
programming model incurs much overhead
knowledge that needs to be taught first
before becoming able to exploit the many
features of libraries that are available for
these programming languages.

It has turned out that a dynamically typed,
caseless, message-based programming
language like ooRexx can be learned in a
much shorter time than is possible
otherwise. The Windows version of ooRexx
supports COM/OLE Windows programs via
its proxy class "OLEObject" making it
possible to interface via COM/OLE by
merely sending ooRexx messages to the
Windows objects with no need to know
technical implementation details about
COM/OLE.

Combining ooRexx with the ooRexx-Java
bridge BSF4ooRexx opens up all of Java for
ooRexx programmers. Taking advantage of
the message paradigm by supplying the
proxy class "BSF" makes it easy and
straightforward for ooRexx programmers to
interact with Java objects by sending them

ooRexx messages. The Java support
alleviates the ooRexx programmers to have
to know any technical implementation
details and makes them extremely
productive as for any possible problem
there are Java class libraries to address
them which can be immediately exploited
by ooRexx programmers.

Students who got educated with ooRexx
and BSF4ooRexx can be observed to learn
the Java programming language much
faster and to a much larger scope than
would be possible by learning programming
with Java only. The main reason is that
otherwise excessive time is needed to teach
fundamental concepts like strict typing,
signatures, class hierarchies and
visibility/accessibility of Java static and
instance fields and static and instance
methods, and "simple" things like
outputting text on the screen which needs
understanding of the presence of the
"java.lang.System" class and the presence
of its "out" field with all the "print" methods
defined for it.

These concepts are easier understood and
need therefore much less time to explain
and to digest, if the person already learned
programming in a dynamically typed,
caseless language and has become able to
exploit the Java class libraries. Such
students learned already the most
important Java concepts from a bird eye's
view and took already advantage of Java
class libraries from ooRexx such that they
had acquired already the concepts that are
needed for being able to e.g. create and
run GUIs, sockets, parse XML or HTML text
and the like.

The author concludes from his experience
that it is more efficient to use an easy to
learn and easy to use programming
language for teaching programming and
then teach more complex languages which
can be learned in a much shorter period of
time than would be possible otherwise.

7. ACKNOWLEDGEMENTS

The author wishes to thank DI Walter Pachl
for his comments and proof reading.

8. REFERENCES

Cowlishaw, M.F. (1990). The REXX
Language. Prentice Hall, Englewood
Cliffs, New Jersey.

Chuan, H.C. (2008). Java Game
Programming 2D Graphics, Java2D and
Images. Retrieved January 23, 2023
from
https://www3.ntu.edu.sg/home/ehchua
/programming/java/J8b_Game_2DGrap
hics.html#zz-2.2

BSF4ooRexx (2023): ooRexx-Java Bridge.
Open-source software. Retrieved
January 22, 2023 from
https://sourceforge.net/projects/bsf4oo
rexx/files

Flatscher, R.G. (2010). The 2010 Edition of
BSF4ooRexx. Proceedings of the 2010
International Rexx Symposium (pp. 1-
35). Retrieved January 22, 2023 from
https://www.rexxla.org/presentations/2
010/2010_BSF4ooRexx.pdf

Flatscher, R.G. (2013). Introduction to
REXX and ooRexx. Facultas, Vienna.

Flatscher, R.G., Müller, G. (2021).
"Business Programming" – Critical
Factors from Zero to Portable GUI
Programming in Four Hours. Journal of
Business Paradigms 6(1). Retrieved
January 22, 2023 from
https://journal.par.hr/archives/send/12-
vol-6-no-1/69-business-programming-
critical-factors-from-zero-to-portable-
gui-programming-in-four-hours

Flatscher, R.G. (2022a). BSF4ooRexx: From
641 GA Update to 850 Beta.

Proceedings of the 2022 International
Rexx Symposium (pp. 1-22). Retrieved
January 22, 2023 from
https://www.rexxla.org/presentations/2
022/202209_B4r641_to_B4r850.pdf

Flatscher, R.G. (2022b). BSF4ooRexx:
Introducing the JDOR Rexx Command
Handler for Easy Creation of Bitmaps
and Bitmap Manipulations on Windows,
Mac and Linux. Proceedings of the 2022
International Rexx Symposium (pp. 1-
22). Retrieved January 22, 2023 from
https://www.rexxla.org/presentations/2
022/202209_B4r641_to_B4r850.pdf

Flatscher, R.G. (2023a). Introduction to
Programming with ooRexx and
BSF4ooRexx, Installments 1-7 (Slides).
Retrieved January 22, 2023 from
https://wi.wu.ac.at/rgf/wu/lehre/autowi
n/material/foils/

Flatscher, R.G. (2023b). Introduction to
Programming with ooRexx and
BSF4ooRexx, Installments 8-14
(Slides). Retrieved January 22, 2023
from
https://wi.wu.ac.at/rgf/wu/lehre/autoja
va/material/foils/

Fosdick, H. (2005). Rexx – Programmer’s
Reference. Wiley Publishing,
Indianapolis, Indiana.

ooRexx (2023): ooRexx. Open-source
software. Retrieved January 22, 2023
from
https://sourceforge.net/projects/oorexx
/files/oorexx/

Wikipedia (2023): Alan Kay cited with “The
big idea is messaging”. Retrieved
January 22, 2023 from
https://en.wikipedia.org/wiki/Alan_Kay
#Early_life_and_work

Appendices

Appendix A: ooRexx Programs and Output

p1=.person~new("Albert Einstein", 45000) -- create a new person: person1
say "p1:" p1~name p1~salary -- show person1's attribute values

p2=.person~new("Mary Withanyname", 35000) -- create a new person: person2
say "p2:" p2~name p2~salary -- show person2's attribute values

p1~increaseSalary(10000) -- increase salary of person1
say "p1:" p1~name p1~salary -- show person1's attribute values

p2~name="Mary Withaspecificname" -- change the name of person2
p2~salary=45500 -- change the salary of person2
say "p2:" p2~name p2~salary -- show person2's attribute values

say "total of salaries:" p1~salary + p2~salary

::class Person -- define name of class

::attribute name -- define attribute "name"

::attribute salary -- define attribute "salary"

::method init -- define constructor (a method routine)
 expose name salary -- establish direct access to attributes
 use arg name, salary -- fetch and store arguments in attributes

::method increaseSalary -- define method routine
 expose salary -- establish direct access to attribute "salary"
 use arg increase -- fetch argument
 salary=salary+increase -- increase value of salary attribute

Figure 3: Defining and using an ooRexx class

p1: Albert Einstein 45000
p2: Mary Withanyname 35000
p1: Albert Einstein 55000
p2: Mary Withaspecificname 45500
total of salaries: 100500

Figure 4: Output of running program in Figure 3

Figure 6: An Excel spreadsheet created by the program in Figure 5

excApp = .OLEObject~new("Excel.Application")
excApp~visible = .true -- make Excel visible
sheet = excApp~Workbooks~Add~Worksheets[1] -- add and get sheet
 -- set titles from an ooRexx array
titleRange=sheet~range("A1:C1") -- get title cell range
titleRange~value = .array~of("Austria", "Belgium", "Croatia")
titleRange~font~bold = .true -- use bold font for titles
sheet~range("A2:C5")~value = createRows(4) -- create and assign array
excApp~displayAlerts = .false -- no alerts (should file exists already)
fileName=directory()"\test.xlsx" -- save in current directory
Say 'fileName:' fileName -- show fully qualified file name
sheet~SaveAs(fileName) -- save file (no alerts, see above)
excApp~quit -- quit (end) Excel

::routine createRows -- create two-dimensional array with arbitrary data
 use arg items=5 -- fetch argument, default, if omitted: 5
 arr=.array~new -- create Rexx array
 do i=1 to items -- create random(min,max) numbers
 arr[i,1] = random(0 ,100) -- Austria
 arr[i,2] = random(101,200) -- Belgium
 arr[i,3] = random(201,300) -- Croatia
 end
 return arr -- return two-dimensional Rexx array

Figure 5: An ooRexx program that creates an Excel Spreadsheet

Appendix B: BSF4ooRexx Programs and Output

Figure 8: Output and created GUI from running program in Figure 7

jf = .bsf~new("javax.swing.JFrame", "Title By ooRexx") -- create JFrame
lblText = '<html><em style="color: green;">Hi there! (by ooRexx)</html>'
lbl= .bsf~new("javax.swing.JLabel", lblText) -- create JLabel
jf~add(lbl) -- add label
jf~setSize(300,70) -- set size
jf~setLocation(50,200) -- set location
jf~visible=.true -- make visible
jf~toFront -- place frame in front of all windows
say 'Hit <enter> to proceed (end) ...'
parse pull data -- wait until user presses <enter> on the keyboard

::requires "BSF.CLS" -- get ooRexx-Java bridge

Figure 7: BSF4ooRexx program that creates a GUI using the Java javax.swing.JFrame class

import java.awt.*;
import java.awt.geom.AffineTransform;
import javax.swing.*;

/** Test applying affine transform on vector graphics */
@SuppressWarnings("serial")
public class AffineTransformDemo extends JPanel {
 // Named-constants for dimensions
 public static final int CANVAS_WIDTH = 640;
 public static final int CANVAS_HEIGHT = 480;
 public static final String TITLE = "Affine Transform Demo";

 // Define an arrow shape using a polygon centered at (0, 0)
 int[] polygonXs = { -20, 0, +20, 0};
 int[] polygonYs = { 20, 10, 20, -20};
 Shape shape = new Polygon(polygonXs, polygonYs, polygonXs.length);
 double x = 50.0, y = 50.0; // (x, y) position of this Shape

 /** Constructor to set up the GUI components */
 public AffineTransformDemo() {
 setPreferredSize(new Dimension(CANVAS_WIDTH, CANVAS_HEIGHT));
 }

 /** Custom painting codes on this JPanel */
 @Override
 public void paintComponent(Graphics g) {
 super.paintComponent(g); // paint background
 setBackground(Color.WHITE);
 Graphics2D g2d = (Graphics2D)g;

 // Save the current transform of the graphics contexts.
 AffineTransform saveTransform = g2d.getTransform();
 // Create a identity affine transform, and apply to the Graphics2D context
 AffineTransform identity = new AffineTransform();
 g2d.setTransform(identity);

 // Paint Shape (with identity transform), centered at (0, 0) as defined.
 g2d.setColor(Color.GREEN);
 g2d.fill(shape);
 // Translate to the initial (x, y) position, scale, and paint
 g2d.translate(x, y);
 g2d.scale(1.2, 1.2);
 g2d.fill(shape);

 // Try more transforms
 for (int i = 0; i < 5; ++i) {
 g2d.translate(50.0, 5.0); // translates by (50, 5)
 g2d.setColor(Color.BLUE);
 g2d.fill(shape);
 g2d.rotate(Math.toRadians(15.0)); // rotates about transformed origin
 g2d.setColor(Color.RED);
 g2d.fill(shape);
 }
 // Restore original transform before returning
 g2d.setTransform(saveTransform);
 }

 /** The Entry main method */
 public static void main(String[] args) {
 // Run the GUI codes on the Event-Dispatching thread for thread safety
 SwingUtilities.invokeLater(new Runnable() {
 @Override
 public void run() {
 JFrame frame = new JFrame(TITLE);
 frame.setContentPane(new AffineTransformDemo());
 frame.pack();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setLocationRelativeTo(null); // center the application window
 frame.setVisible(true);
 }
 });
 }
}
 Figure 9: A Java program demonstrating Java2D (Chuan, 2008)

 -- create a JDOR Rexx command handler
jdh=.bsf~new("org.oorexx.handlers.jdor.JavaDrawingHandler")
say "JDOR version:" jdh~version -- show version
call BsfCommandHandler "add", "jdor", jdh -- add as a Rexx command handler
address jdor -- set default environment from operating system to JDOR

-- ooRexx solution of "AffineTransform" section in (as of 2023-01-23)
-- <https://www3.ntu.edu.sg/home/ehchua/programming/java/J8b_Game_2DGraphics.html>
newImage 640 480 -- create new image
winShow -- show image in a window
winTitle "Affine Transform Demo (ooRexx)" -- set window's title

 -- could use Rexx variables denoting the respective Java arrays instead
polygonXs="(-20,0,+20,0)" -- define four x coordinates
polygonYs="(20,10,20,-20)" -- define four y coordinates
shape myP polygon polygonXs polygonYs 4 -- create polygon shape
color green -- set color to green
fillShape myP -- fill (and show) the polygon shape
translate 50 50 -- move origin (x=x+50, y=y+50)
scale 1.2 1.2 -- increase the polygon shape sizes by 20%
fillShape myP -- fill (and show) the polygon shape

do 5 -- repeat five times
 translate 50 5 -- move origin (x=x+50, y=y+5)
 color blue -- set color to blue
 fillShape myP -- fill (and show) the polygone shape
 rotate 15 -- rotate by 15°
 color red -- set color to red
 fillShape myP -- fill (and show) the polygone shape
end

say 'Hit <enter> to proceed (end) ...'
parse pull data -- wait until user presses <enter> on the keyboard

::requires "BSF.CLS" -- get ooRexx-Java bridge

Figure 10: JDOR Rexx commands comparable to the Java program in Figure 9

Figure 11: Output and created GUI from running program in Figure 10

	Information Systems and Operations Management
	Wirtschaftsuniversität Wien (WU)
	Welthandelsplatz 1, A-1020 Wien, Austria
	Abstract
	1. INTRODUCTION
	2. REXX
	3. OOREXX
	4. BSF4OOREXX
	5. BRIEF OVERVIEW OF THE DEVELOPED SYLLABUS
	6. CONCLUSIONS
	8. REFERENCES
	Appendices
	Appendix A: ooRexx Programs and Output
	Appendix B: BSF4ooRexx Programs and Output

