

PL/I – REXX Comparison
Introduction

REXX (née REX) was modeled after PL/I,
but has significantly deviated from it. This
remains true with ANSI Rexx and ooRexx.
In this presentation, bolding indicates literal
text of the language, e.g. keywords, but not
generic modifiers, e.g., “DO statement”;
italics indicates a variable, e.g.,
“expression”, and the PL/I features are
those of the OS PL/I “Optimizing” and
Checkout compilers, which were current at
the time. Also, despite a few references to
NetRexx and ooRexx syntax, they are
mostly beyond the scope of this
presentation.

BIF is Built In Function.

PL/I – REXX Comparison
Guesses

I am not aware of any paper explaining
what lead to the differences from PL/I.
However, there are several factors that
would naïvely seem to require
accommodation in the syntax.

PL/I has no reserved words and does not
allow a statement to be a bare expression.
Rexx allows a statement to be a bare
expression.

PL/I operators are explicit; Rexx has implied
abutment operators.

PL/I requires every statement to end with a
semicolon; Rexx allows many semicolons to
be omitted

PL/I – REXX Comparison
Topics

The differences from PL/I include

● Abbreviations

● Block structure

● Bounds checking

● Condition handling

● Continuation

● Control structures

● Data types

● Name scoping

● Storage allocation

PL/I – REXX Comparison

Abbreviations

In PL/I, many
keywords may be
abbreviated, e.g.,
PROC for
PROCEDURE. In
REXX, keywords are
spelled out.

PL/I – REXX Comparison

Block structure
In PL/I, code is structured into
blocks beginning with BEGIN or
PROCEDURE (PROC), and groups
beginning with DO, and ending with
END. It is not possible to explicitly
transfer to code inside a block or
group from outside of it, although a
subroutine can signal a condition
that is handled within the block that
called it. The term unit may refer to
a single statement, a block or a
group.

Although REXX does have DO
loops, it has no true block structure.

PL/I – REXX Comparison

Block structure
Example

FOO: DO I=1 TO BAR;

 X(I)=0;

 ...

 BAZ: ITERATE FOO;

 ...

 END;

GO TO BAZ /* Invalid */;

PL/I – REXX Comparison

Bounds Checking

When it is enabled, PL/I
raises STRINGRANGE for
attempted access beyond the
size of a string.

When it is enabled, PL/I
raises SUBSCRIPTRANGE
for attempts to access an
array elements with
subscripts outside of the
bounds declarded for the
array.

PL/I – REXX Comparison
Bounds Checking

Example
(STRINGRANGE,SUBSCRIPTRANGE):

MYLABEL: BEGIN;

 DCL NAME CHAR(50),

 S(10) CHAR(20);

 ...

 S(I) = SUBSTR(NAME,J,K);

 /* Raise SUBSCRIPTRANGE

 if I<1 or I>10 */

 /* Raise STRINGRANGE

 if J<1 or J+K>21 */

 ...

 END;

PL/I – REXX Comparison

Condition Handling
● PL/I has dynamic establishment

of condition handling blocks
within a lexical context; A GOTO
out of the condition handler pops
the control stack appropriately.

● REXX has dynamic
establishment of condition
handling at arbitrary labels,
including labels inside a DO loop
or unrelated procedure. A
SIGNAL flushes the stack rather
than popping it appropriately.

PL/I – REXX Comparison
Condition Handling

Example

PL/I REXX
ON condition
 GO TO FOO;

SIGNAL ,
 ON condition ,
 NAME FOO

ON condition
 CALL FOO;

SIGNAL ON
condition

CALL FOO

PL/I – REXX Comparison

Continuation
● In PL/I, every statement must

end in a semicolon, so there is
no need to indicate continuation
lines.

● In REXX, a trailing comma
serves as a continuation
indicator, continuation is often
implicit, and a trailing semicolon
is often implicit. This allows for a
slightly terser coding style, but it
is a common error to forget to
add a comma for continuation
after a trailing comma.

PL/I – REXX Comparison

Continuation
Example

PL/I Rexx
A = B*C
 + C*D;

A=B*C ,
 +D*E

PL/I – Rexx Comparison
Control Structures

● BEGIN
● CALL
● Condition prefix
● DO
● Function reference
● GOTO
● IF
● ITERATE

● Label:
● LEAVE
● ON
● OTHERWISE
● PROCEDURE
● RETURN
● SELECT
● SIGNAL
● WHEN

PL/I – REXX Comparison
Control structures

BEGIN
● In PL/I, a BEGIN

statement establishes a
lexical block that can
declare local variables
and procedures invisible
from outside the block.
PL/I automatically pops
the stack on block exit,
freeing any automatic
variables.

● REXX has no equivalent.

PL/I – REXX Comparison
Control structures

CALL
● in PL/I a CALL statement

invokes an external procedure
or an internal block headed by a
PROCEDURE statement. The
keyword CALL is followed by a
procedure name and an optional
parenthesized list of arguments.

● In REXX the procedure name
can be any label, and the
arguments are not enclosed in
parentheses.

PL/I – REXX Comparison
Control structures
Condition prefix

● In PL/I, A prefix of the
form (condition): or
(NOcondition): enables or
disables condition in a
single unit, which may be
a block.

● REXX has no equivalent.

PL/I – REXX Comparison
Control structures

DO
● The DO statement in PL/I

uses the label of the DO as a
loop designator on END,
ITERATE and LEAVE

● The DO statement in REXX
uses the control variable of
the DO as a loop designator
on END, ITERATE and
LEAVE

● ooRexx 5.0 adds an optional
LABEL parameter to the DO
statement.

PL/I – REXX Comparison
Control structures

Function References
● In PL/I, an internal

function invocation must
refer to a PROCEDURE
statement and may
optionally be followed by
a parenthesized list of
arguments.

● In REXX, the syntax is
identical but the name
may be an arbitrary label.

PL/I – REXX Comparison
Control structures

GOTO
● In PL/I a label is only visible

within its enclosing block and
has an associated stack frame
and a GOTO pops the stack
enough to leave the stack frame
associated with the label as the
top of stack.

● In REXX a label is visible from
the entire source file and simply
marks a location in the source
code; there is no GOTO
statement. It is a common
misconception that SIGNAL is a
GOTO, but the semantics are
very different.

PL/I – REXX Comparison
Control structures

ITERATE
● In PL/I, the statement has

an optional loop label.

● In REXX, the statement
has an optional control
variable

● In ooRexx 5.0, the
statement has either an
optional control variable
or an optional label
specified on the LABEL
operand of the
corresponding DO.

PL/I – REXX Comparison
Control structures

LEAVE
● In PL/I, the statement has

an optional loop label.

● In REXX, the statement
has an optional control
variable

● In ooRexx 5.0, the
statement has either an
optional control variable
or an optional label
specified on the LABEL
operand of the
corresponding DO.

PL/I – REXX Comparison
Control structures

ON
● In PL/I, the ON statement

activates an ON unit
(exception handler). The
statement following ON
condition is normally
either a block or a GOTO

● The closest equivalent in
REXX is SIGNAL ON
condition NAME label.

● OoRexx adds SIGNAL
ON condition CALL label.

PL/I – Rexx Comparison
Control structures

OTHERWISE
● In PL/I, OTHERWISE is

an optional statement
withing a select group. A
single unit, which may be
a block or group, follows
the keyword.

● In Rexx, OTHERWISE
may be followed by
multiple statements; the
END closing the SELECT
also closes the
OTHERWISE.

PL/I – REXX Comparison
Control structures

PROCEDURE
● In PL/I, a procedure always begin with

an optional condition prefix, followed by
a label and a PROCEDURE keyword
(either spelled out or abbreviated),
followed by an optional parenthesized
list of parameters.

● In REXX a procedure does not require a
PROCEDURE statement unless
variables need to be hidden. There is no
declaration of parameters; the ARG BIF
and the PARSE ARG statement can be
used to access arguments,.

● In ooRexx arguments are also available
via the USE ARG statement.

PL/I – REXX Comparison
Control structures

RETURN

The RETURN
statement is
basically the
same in PL/I
and Rexx.

PL/I – REXX Comparison

Control structures
SELECT

● Rexx does not allow an expression
after SELECT, although ooRexx has
an equivalent.

● PL/I has a parenthesized list of
expressions after WHEN, while Rexx
has does not require parentheses.

● PL/I does not allow THEN after
WHEN, while Rexx requires it.

● PL/I only accepts a single block,
group or statement after
OTHERWISE while Rexx allows
multiple statements.

● In PL/I there is no terminal END for
SELECT, while in Rexx it is required.

PL/I-Rexx Comparison
Control Structures

SELECT
Example 1

PL/I Rexx
SELECT (NAME);
 WHEN('TOM')
 N=1;
 WHEN('DICK')
 N=2;
 WHEN('HARRY')
 DO;
 N=3;
 END;
 OTHERWISE;
 N=4;

/* ooRexx only */
SELECT CASE NAME
 WHEN('TOM')
 THEN N=1
 WHEN('DICK')
 THEN N=2
 WHEN('HARRY')
 THEN DO
 N=3
 END
 OTHERWISE
 N=4
 END

PL/I-Rexx Comparison
Control Structures

SELECT
Example 2

PL/I Rexx
SELECT;
 WHEN (FOO=1)
 NAME='TOM';
 WHEN (FOO=2)
 NAME='DICK';
 WHEN (FOO=3) DO;
 NAME='HARRY';
 END;
 OTHERWISE DO;
 NAME='PLONI';
 FLAG='!';
 END;

SELECT
 WHEN FOO=1 THEN
 NAME='TOM'
 WHEN FOO=2 THEN
 NAME='DICK'
 WHEN FOO=3
 THEN DO
 NAME='HARRY'
 END
 OTHERWISE
 NAME='PLONI'
 FLAG='!'
 END

PL/I-Rexx Comparison
Control Structures

SIGNAL
● In PL/I, SIGNAL raises a

condition.

● In Rexx, there are several
forms of SIGNAL, used to
raise a condition,
establish a condition
handler and deactivate a
condition handler.

PL.I – Rexx Comparison
Control structures

WHEN
● In PL/I a WHEN statement has a list

of expressions in parentheses that
are matched against the expression
on the corresponding SELECT; if the
SELECT has no expression then PL/I
converts the WHEN expressions to
BIT. The associated code unit follows
directly after the expressions with no
separating semicolon.

● In Rexx a WHEN statement has a list
of expressions that evaluate to 0 or
1. The expression list is followed by
THEN.

PL/I – REXX Comparison

Data types
● In PL/I, variables have a

type either explicitly
declared or inferred from
their names.

● In Rexx all variables are
strings.

● In ooRexx, all variables
are objects.

PL/I – REXX Comparison

Data types
Arrays

● In PL/I, arrays have extents
and types either explicitly
declared or inferred from their
names. Each extent has a
lower and upper bound, with
a default lower bound of 1.

● In Rexx all variables are
strings. Compound variables
partially fill the role of arrays.

● In ooRexx, there is an Array
class.

PL/I – REXX Comparison

Data types
Scalars

● In PL/I, scalar variables
may be any of

● File

● Label

● Numeric

● Pointer

● String

PL/I – REXX Comparison
Data types

Scalars
File variables

● In PL/I, a file variable
contains the attributes
and status of a file.

● While Rexx has no
equivalent, in ooRexx
Stream objects play a
similar role.

PL/I – REXX Comparison
Data types

Scalars
File variables

●In PL/I, label
variables refer to
the combination
of a location and
a stack frame.

●Rexx has no
equivalent.

PL/I – REXX Comparison
Data types

Scalars
Numeric variables

● In PL/I, numeric
variables may be either
FIXED or FLOAT, and
may be declared with
various attributes, e.g.,
base, size.

● In Rexx there is no
equivalent, although
the NUMERIC statemnt
controls the results of
numeric expressions.

PL/I – REXX Comparison
Data types

Scalars
Pointer variables

● In PL/I, pointer values
either contain a storage
address or contain the
special value NULL. They
are used to access
BASED variables.

● Rexx has no equivalent,
although the BIF
STORAGE allow
character variaables to
play a similar role.

PL/I – REXX Comparison
Data types

Scalars
String variables

● In PL/I, string variables
may be either BIT or
CHARACTER, and may
either be fixed length or
be VARYING with a
maximum size.
Comparisons yield a
BIT(1) result.

● In Rexx, all variables are
varying character
strings.

PL/I – REXX Comparison
Data types
Structures

● In PL/I, structures
contain named
elements, which may
themselves be arrays,
scalars or structures.

● Rexx has no equivalent.
However, compound
variables and the
STORAGE BIF fill some
of the same roles.

PL/I – REXX Comparison

Name scoping
● In PL/I, names declared

within a BEGIN or
PROCEDURE block are
local to that block and
hide any equal names in
an outer block.

● In REXX, The
PROCEDURE statement
dynamically hides all
variable other than those
listed in EXPOSE.

PL/I – REXX Comparison

Name scoping
Example

MYCMD: PROC OPTIONS(MAIN);

 DECLARE FOO FLOAT,

 BAR FLOAT;

 CALL MYSUB;

MYSUB: PROCEDURE;

 DCL FOO CHAR;

 /* The outer declaration of FOO

 is not visible;

 the outer declaration of BAR

 is visible */

 END MYSUB;

END MYCMD;

PL/I – REXX Comparison

Storage Allocation
● PL/I allows the implicit

allocation of AUTOMATIC
variables, the explicit
allocation of BASED
variables and the explicit
allocations of new
generations of
CONTROLLED variables.

● REXX has no equivalent.

● OoRexx has the new
method for classes.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

