
Vienna University of Economics and Business ▪ Welthandelsplatz 1, D2-C ▪ A-1020 Vienna Prof. Rony G. Flatscher

Department of Information Systems
and Operations Management

Multithreaded Programming in ooRexx
Understanding the ooRexx MT Concepts

The 2024 International Rexx Symposium
Brisbane, Queensland, Australia

March 3rd – March 6th 2024

2 Prof. Rony G. Flatscher

Overview

● Multithreading (MT) concepts in ooRexx
● MT related keyword statements in method routines

– REPLY keyword statement
– GUARD keyword statement

● .Message class
– Allows for dispatching messages synchronously or asynchronously
– Message objects can be used in the .Alarm class to dispatch messages later

● Roundup

3 Prof. Rony G. Flatscher

Multithreading Concepts, 1

● Can be triggered using message objects and within method routines
● By default all method routines are guarded

– A guarded method can only execute, if it has the object's scope lock
– All methods of a class are in the same “scope”

● Only one of the guarded methods in the same scope can execute, all other methods are
blocked

● A running guarded method can invoke other guarded methods in the same scope

● It is possible to defne a method as UNGUARDED
– Unguarded methods can always run concurrently
– Unguarded methods are not controlled (guarded) by the object's scope lock
– Watch out: unguarded methods can concurrently change attribute values!

● Synchronize access to attributes, e.g. with an .EventSemaphore or a .MutexSemaphore

4 Prof. Rony G. Flatscher

Multithreading Concepts, 2

● ooRexx is a powerful interpreter that
– Allows mutiple Rexx interpreter instances to run concurrently in the same process

● Each Rexx interpreter instance has a distinct .local environment and shares the global
.environment directory

– Each ooRexx program can take advantage of multithreading where each
concurrently executing activity gets run on a proper operating system thread

– Maintains an object scope lock for all methods of the same class (“scope”)
● The object's scope lock is used to guard the execution of guarded methods in the same

scope
● Guarded methods in superclasses are guarded separately according to their scope
● By defaul,t guarded methods can execute in parallel if they stem from different scopes

– Intra object concurrency
– Allows safe concurrent execution of methods in different instances (objects)

● Inter object concurrency

5 Prof. Rony G. Flatscher

Multithreading Concepts, 3

● Object Rexx default behaviour (continued)
– All methods are GUARDed by default (as a side effect access to attributes gets serialized)

● Within a class (“scope”) by default only one guarded method can be executed for one and the
same object if it acquired the object's scope lock, all other guarded methods of that class
(scope) get blocked

– An object's scope lock is acquired when a guarded method gets invoked
– An object's scope lock gets released when a guarded method ends execution

● Methods of one and the same object defned in different superclasses (scopes), are able to run
concurrently (intra-multithreading)

● The keyword UNGUARD of a method directive allows that method to run
concurrently with any other method in that class for one and the same
object
– There is no exclusive access protection of the object and its attributes!

Cf. rexxref.pdf (12.4. Using Additional Concurrency Mechanisms)

6 Prof. Rony G. Flatscher

Multithreading Concepts, 4

● Object Rexx default behaviour (continued)
– It is possible to kick off multithreading at runtime from within methods

● REPLY keyword statement (only available within a method)
– Same effect as the RETURN statement

● Calling program receives execution control (continues to run), but
● In addition the remaining statements of the method continue to run as a new

activity concurrently on a new thread!
– Optionally the REPLY statement may return a value to the calling program
– After the REPLY keyword statement an EXIT or a RETURN keyword statement must

not supply a return value
– Note: the object's scope lock of a guarded method will get released upon executing

the REPLY keyword statement and will get reacquired on the new thread for executing
the remaining statements

Cf. rexxref.pdf (2.24. REPLY, 2.25. RETURN)

7 Prof. Rony G. Flatscher

Multithreading Concepts, 5

● It is possible to determine at runtime whether methods are allowed to be
executed concurrently with other methods of the same class (scope) for one
and the same object
– GUARD

● GUARD ON instruction
– Waits until it gets the object's scope lock if another method holds the object's scope lock

already, then execution is halted until the other method releases the object's scope lock
● The GUARD OFF instruction releases the object's scope lock and makes the method

unguarded
– Effcient safeguarding of "critical segments"

● Waiting for exclusive access can be made dependent on a given value appearing in an
attribute of the object (GUARD ON WHEN ...)

● Waiting for the object's scope lock being relesed can be made dependent on a given
value appearing in an attribute of the object (GUARD OFF WHEN ...)

Cf. rexxref.pdf (12.4. Using Additional Concurrency Mechanisms)

8 Prof. Rony G. Flatscher

REPLY Keyword Instruction, 1

● REPLY returns control to the caller and can have a return value
● Remaining method statements constitute a separate activity being

executed on a separate thread
● Notes ad the following example

– The execution is not necessarily sequential (synchronous) anymore
● The main program may end before the concurrently executing activities end

– As all the methods are guarded, only the one holding the object's scope lock
can execute blocking all others

● All the other guarded methods have to wait until the object's scope lock gets
released such that one of the next guarded methods can acquire the object's scope
lock and becomes eligible to run

9 Prof. Rony G. Flatscher

after testread
from_a 1
from_a 2
…
from_a 50
FROM_B 1
...
FROM_B 50

Output:

REPLY Keyword Instruction, 2
a=.x~new
b=.x~new
c=.x~new
fifo=.fifo~new -- a FIFO buffer
.local~repetitions = 50
a~testwrite(fifo, "from_a")
b~testwrite(fifo, "FROM_B")
c~testread(fifo)
say "after testread"

::class X

::method testwrite -- guarded
 use arg fifo, msg1
 REPLY
 do i=1 to .repetitions
 fifo~write(msg1 i)
 End

::method testread -- guarded
 use arg fifo
 REPLY
 do while fifo~items > 0
 i=fifo~read
 say i
 end

::class FIFO -- first-in, first-out
::method init -- guarded
 expose buffer
 buffer=.queue~new

::method write -- guarded
 expose buffer
 use arg tmp
 buffer~queue(tmp)

::method read -- guarded
 expose buffer
 return buffer~pull

::method items -- guarded
 expose buffer
 return buffer~items

10 Prof. Rony G. Flatscher

REPLY and GUARD ON|OFF, 1

● REPLY returns control to the caller the remaining statements get
executed on a new activity (thread)

● The FIFO class uses GUARD ON WHEN and GUARD OFF WHEN
– Demonstrates how to use some lock attribute to control execution in critical

sections of code
– Attribute lock gets defned in constructor and is accessed from the method

routines sheltering critical sections of code with the help of the GUARD keyword
instruction

– Notes
● Changing the value of the attribute lock is done only when the object's scope lock

could be obtained such that no concurrent change of the attribute is possible
● This is a pedagogical example, code could be simpler

11 Prof. Rony G. Flatscher

after testread
FROM_B 1
from_a 1
FROM_B 2
...
FROM_B 50
from_a 19
...
from_a 50

Output:

REPLY and GUARD ON|OFF, 2
a=.x~new
b=.x~new
c=.x~new
fifo=.fifo~new -- a FIFO buffer
.local~repetitions = 50
a~testwrite(fifo, "from_a")
b~testwrite(fifo, "FROM_B")
c~testread(fifo)
say "after testread"

::class X

::method testwrite -- guarded
 use arg fifo, msg1
 REPLY
 do i=1 to .repetitions
 fifo~write(msg1 i)
 End

::method testread -- guarded
 use arg fifo
 REPLY
 do while fifo~items > 0
 i=fifo~read
 say i
 end

::class FIFO
::method init -- guarded
 expose buffer lock
 buffer=.queue~new
 lock=.false

::method write UNGUARDED
 expose buffer lock
 GUARD ON WHEN lock=.false
 lock=.true
 GUARD OFF
 use arg tmp
 buffer~queue(tmp) -- queue item
 GUARD ON
 lock=.false

::method read UNGUARDED
 expose buffer lock
 GUARD ON WHEN lock=.false
 lock=.true
 GUARD OFF
 data=buffer~pull -- get item
 GUARD ON
 lock=.false
 return data

::method items -- guarded
 expose buffer
 return buffer~items

12 Prof. Rony G. Flatscher

● .Message class
– Two possibilities to dispatch messages

● SEND - synchronous execution
– Execution proceeds, after the message was completely carried out

● START - asynchronous execution (multithreading)
– Message is dispatched and invokes the method as an activity on a sepearate thread
– Execution of the calling program proceeds concurrently

– Additional interesting methods in the Message class
● COMPLETED – returns .true or .false, indicating whether the message has completed,

i.e. the invoked method has completed
● RESULT - waits for and returns the result of an (asynchronously) executing method
● NOTIFY - allows sending a message to an object to notify it that the message has

fnished executing

Cf. rexxref.pdf (5.1.2. Message Class)

Class MESSAGE, 1

13 Prof. Rony G. Flatscher

● .Alarm class expects a message object as its frst argument
– Allows for sending the message at a later time
– Allows for notifcation callbacks
– Dispatching the message can be cancelled (cf. CANCEL method)

Cf. rexxref.pdf (5.4.1. Alarm Class)

Class MESSAGE, 2

14 Prof. Rony G. Flatscher

after testread
from_a 1
from_a 2
…
from_a 50
FROM_B 1
...
FROM_B 50

Output:

Using Class MESSAGE, no REPLY!
aa=.x~new
b=.x~new
c=.x~new
fifo=.fifo~new -- a FIFO buffer
.local~repetitions = 50
.message~new(a, "testwrite", "I", fifo, "from_a")~start
.message~new(b, "testwrite", "I", fifo, "FROM_B")~start
.message~new(c, "testread", "I", fifo) ~start
say "after testread"

::class X
::method testwrite -- guarded
 use arg fifo, msg1
 do i=1 to .repetitions
 fifo~write(msg1 i)
 end

::method testread -- guarded
 use arg fifo
 do while fifo~items > 0
 i=fifo~read
 say i
 end

::class FIFO
::method init -- guarded
 expose buffer
 buffer=.queue~new

::method write -- guarded
 expose buffer
 use arg tmp
 buffer~queue(tmp)

::method read -- guarded
 expose buffer
 return buffer~pull

::method items -- guarded
 expose buffer
 return buffer~items

15 Prof. Rony G. Flatscher

after testread
from_a 1
from_a 2
…
from_a 50
FROM_B 1
...
FROM_B 50

Output:

Using OBJECT's START-method, no REPLY!
aa=.x~new
b=.x~new
c=.x~new
fifo=.fifo~new -- a FIFO buffer
.local~repetitions = 50
a~start("testwrite", fifo, "from_a")
b~start("testwrite", fifo, "FROM_B")
c~start("testread", fifo)
say "after testread"

::class X
::method testwrite -- guarded
 use arg fifo, msg1
 do i=1 to .repetitions
 fifo~write(msg1 i)
 end

::method testread -- guarded
 use arg fifo
 do while fifo~items > 0
 i=fifo~read
 say i
 end

::class FIFO
::method init -- guarded
 expose buffer
 buffer=.queue~new

::method write -- guarded
 expose buffer
 use arg tmp
 buffer~queue(tmp)

::method read -- guarded
 expose buffer
 return buffer~pull

::method items -- guarded
 expose buffer
 return buffer~items

16 Prof. Rony G. Flatscher

Synchronizing Activities

● Executing activities (threads) concurrently
– How to determine whether all concurrently executing activites (threads) have

stopped?

● Example class Waiter
– Simple class whose only instance method "wait" is to run in the background for

a random length of time
– Number of running activites (threads) is counted with a class attribute
– Class method "wait" blocks until counter drops to 0 and returns then to the

caller/invoker
– Original idea and code: cf. Ian Collier, news:comp.lang.rexx, 2004-11-09

17 Prof. Rony G. Flatscher

Class WAITER, Waiting on Threads …

Waiting for counter to drop to 0...
All done
Waiter 5 waiting 4 seconds
Waiter 1 waiting 2 seconds
Waiter 3 waiting 5 seconds
Waiter 4 waiting 4 seconds
Waiter 2 waiting 1 seconds
Waiter 2 finished
Waiter 1 finished
Waiter 5 finished
Waiter 4 finished
Waiter 3 finished

Possible Output:w=.waiter~new -- create an instance
do i=1 to 5
 w~wait(i) -- invoke instance method
end
say "Waiting for counter to drop to 0..."
.waiter~wait -- invoke class method
say "--- All done ---"

/* Waiter */
::class waiter
::method init class -- guarded class method
 expose counter
 counter=0 -- set initial value
::method up class -- guarded class method
 expose counter
 counter=counter+1 -- increase counter
::method down class -- guarded class method
 expose counter
 counter=counter-1 -- decrease counter
::method wait class -- guarded class method
 expose counter
 guard on when counter=0 -- wait until counter drops to 0

::method wait unguarded -- instance method
 a=random(1,6) -- get a number between 1 and 6
 reply -- now concurrency starts
 parse arg n -- get invocation number
 .waiter~up -- increase counter
 if n<>'' then say 'Waiter' n 'waiting' a 'seconds'
 call syssleep a -- sleep a few seconds
 if n<>'' then say 'Waiter' n 'finished'
 .waiter~down -- decrease counter

18 Prof. Rony G. Flatscher

Roundup

● ooRexx makes it easy to create multithreaded programs
– Keyword statements REPLY and GUARD in method routines
– .Message class to dispatch messages asynchronously with START

● Message objects can be used for the .Alarm class to dispatch message later
– ooRexx root class .Object offers a START method to simplify

multithreading

● Have fun exploring multithreading with ooRexx!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

