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Overview

● Bird eye's view of multithreading (MT) concepts in ooRexx
● ooRexx and TRACE 
● The new TraceObject class in ooRexx 5.1.0beta
● Some examples
● Roundup
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Bird Eye's View of MT in ooRexx

● ooRexx is a multithreaded programming language
– Keyword statement REPLY returns from a method, but has the remainder of that

method execute in parallel as a new activity on a new thread
– Keyword statement GUARD 

● Controls whether guarded method routines of the same class (“scope”) get serialized
using the object's scope lock as a semaphore 

● By default method routines are guarded but the programmer can override this default
● The keyword GUARD allows to change the state of a method from guarded to

unguarded and vice versa
● Unguarded method routines can always run in parallel to any other method defned in

the same class (“scope”)
– Using the start method of the Message or Object class allows to dispatch

messages on a new thread to carry out the desired activity 
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TRACE, 1   

● Tracing in Rexx – and therefore in its successor ooRexx – is a very
powerful means to analyze and to understand what the ooRexx code
does at runtime

● There is a TRACE keyword statement and a TRACE() built-in-function
(BIF) to control tracing of ooRexx programs, both offering the options:
– All: the statement will be traced (shown) before it gets executed 
– Commands: the command will be traced (shown) before it gets executed, in case

of an error or failure condition the command's return code will be displayed
– Error: traces a command with an error or failure condition together with the return

code after it got executed
– Failure:  traces a command with a failure condition together with the return code

after it got executed; this option is a synonym for option Normal which is in effect
by default 
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TRACE, 2   

● Options (continued)
– Intermediates: traces (shows) all clauses before they get executed, traces the

results of expressions and of name substitutions
– Labels: traces method and routine invocations, internal subroutine calls, transfer

of control using the SIGNAL keyword instruction and labels passed during
program execution 

– Normal: sets tracing to trace failures in commands, unless the ooRexx ::OPTIONS
TRACE directive sets a different program wide default option 

– Off: traces nothing and sets the trace prefx option to off  
– Results: traces all statements before execution, displays values assigned during

ARG, PARSE, PULL and USE and the fnal result
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::OPTIONS TRACE, 2   

● The ::OPTIONS directive statement of ooRexx allows to defne the
default trace option for the entire program 
– Its TRACE subkeyword is followed by one of the aforementioned trace options
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Sample doc_event.rex, 1   

● The ooRexx reference book (rexxref.pdf) includes a multithreaded
sample in section “5.4.7. EventSemaphore Class” to demonstrate how
one can use an event semaphore to synchronize the threads (activities)
– The main program creates an event semaphore
– It then creates a few instances of a class named Task and sends each a waitFor 

message which will cause the receiving objects to invoke the method waitFor 
defned in the class Task 

– The method waitFor will
● Return immediately control to the main program using the REPLY keyword statement  
● On a new thread it will fetch the supplied arguments, output its supplied name and then

waits for the event semaphore to be posted by the main program
– After the loop and a short sleep the main program will post the event semaphore

releasing all the threads that have been waiting for this event to happen
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Sample doc_event.rex, No Trace 2

main starts tasks
task 1 waits
task 2 waits
task 3 waits
main posts
main ends
task 1 runs
task 3 runs
task 2 runs

Output (last three lines may be shown in a different sequence):say "main starts tasks"
do nr = 1 to 3          -- create tasks that wait on semaphore
    .task~new~waitFor(event, "task" nr) -- create object, send
message
end
call SysSleep 0.1       -- sleep a bit
say "main posts"
event~post              -- now post the event semaphore
say "main ends"

::class Task
::method waitFor
    reply   -- returns to caller, remaining code runs on new thread
    use strict arg event, name  -- fetch event semaphore and name
    say name "waits"
    event~wait          -- wait until semaphore gets posted
    say name "runs"
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Sample doc_event.rex
Trace All, 3

     2 *-* event = .EventSemaphore~new
     3 *-* say "main starts tasks"
main starts tasks
     4 *-* do nr = 1 to 3
     5 *-*   .task~new~waitFor(event, "task" nr)
       >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
    14 *-* reply
     6 *-* end
       >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
     4 *-* do nr = 1 to 3
    15 *-* use strict arg event, name
     5 *-*   .task~new~waitFor(event, "task" nr)
    16 *-* say name "waits"
task 1 waits
       >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
    17 *-* event~wait
    14 *-* reply
     6 *-* end
     4 *-* do nr = 1 to 3
     5 *-*   .task~new~waitFor(event, "task" nr)
       >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
    14 *-* reply
       >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
     6 *-* end
       >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
    15 *-* use strict arg event, name
     4 *-* do nr = 1 to 3
    15 *-* use strict arg event, name
    16 *-* say name "waits"
task 2 waits
     7 *-* call SysSleep 0.1
    16 *-* say name "waits"
task 3 waits
    17 *-* event~wait
    17 *-* event~wait
     8 *-* say "main posts"
main posts
     9 *-* event~post
    10 *-* say "main ends"
main ends
    18 *-* say name "runs"
task 2 runs
    18 *-* say name "runs"
task 3 runs
    18 *-* say name "runs"
task 1 runs

Output (maybe):

-- doc_event.rex
event = .EventSemaphore~new
say "main starts tasks"
do nr = 1 to 3
    .task~new~waitFor(event, "task" nr)
end
call SysSleep 0.1
say "main posts"
event~post
say "main ends"

::class Task
::method waitFor
    reply
    use strict arg event, name
    say name "waits"
    event~wait
    say name "runs"

::options trace all
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Some Remarks   

● TRACE works in multithreaded programs as well!
● However the trace prefx does not include any thread related

information like
– Thread number
– Which of the guarded methods owns the object's scope lock, which one must wait

for it (or with other words which guarded method is currently blocked)

● In complex ooRexx deployments the following information in the trace
prefx may be helpful for debugging MT programs additionally
– Which Rexx interpreter instance executes the statement, which invocation

identifer is the current statement located at, which method runs against which
attribute pool (i.e. for which object, instance)
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New TraceObject Class, 1  

● ooRexx 5.1.0beta introduces a new class: TraceObject (a subclass of
StringTable)

● TRACE will create an instance of this class and flls in all trace related
information, including multithreaded related ones (see next slide)

● TraceObject defnes the following class attributes
– collector – by default .nil, if set to an object that understands the append message

each created TraceObject will be appended to it
– counter – keeps a count of created TraceObjects
– option - allows to set an option (only the frst character gets used): Normal

(default),  Profling, Thread, Standard, Full 
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New TraceObject Class, 2  

● TraceObject has a makeString method that returns by default a string
formatted in the classic trace layout using the contained information
– One can use the TraceObject class method setMakeString(myMakeString) to

change the method and unsetMakeString() to use the default implementation 
– The default makeString implementation of TraceObject, if its class attribute option 

is currently set to
● 'N' (normal) or 'P' (profling/probing) then the normal trace string (trace prefx plus the

traced line) gets returned
● 'T' (thread) then the return string consists of the trace prefx with the thread number

inserted after its  second character and then concatenated with the trace line
● 'S' (standard) or 'F' (full): the normal trace string gets prepended with additional square

bracketed information
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New TraceObject Class, 3  

● A TraceObject instance will have entries with the following indexes
– ATTRIBUTEPOOL   

●  a number, makeString prepends it with the letter A  if option is set to F  
– HASOBJECTLOCK (may be subject to be renamed to HASSCOPELOCK)  

● .true/.false, makeString uses an asterisk, if .true,  a blank character else if option is set to F  
– INTERPRETER   

●  a number, makeString prepends it with the letter R  if option is set to F  
– INVOCATION   

●  a number, makeString prepends it with the letter I  if option is set to F or S 
– ISGUARDED   

● .true/.false, makeString uses the letter G, if .true,  the letter U else if option is set to F or S 
– NR   

●  a sequential whole number, the default makeString implementation does not use it
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New TraceObject Class, 4  

● A TraceObject instance will have entries with the following indexes
(continued)
– OBJECTLOCKCOUNT (may be subject to be renamed to SCOPELOCKCOUNT)

●  a number, makeString prepends it with the letter L  if option is set to F or S 
– OPTION   

●  The value of the class attribute option that was in effect when this instance got created,
the default makeString implementation does not use it 

– THREAD   
●  a number, makeString prepends it with the letter T  if option is set to F or S, or the number

gets inserted in the trace prefx if option is set to T  
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New TraceObject Class, 5  

● A TraceObject instance will have entries with the following indexes
(continued)
– TIMESTAMP   

● A DateTime instance representing the creation date and time of this TraceObject instance,
the default makeString implementation does not use it  

– TRACELINE   
● The trace line string
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Changing Sample doc_event.rex
Option T (Thread)
● To get to see the thread number one simply changes TraceObject's

class attribute option to Thread (only the frst letter is needed) 
– Any trace output thereafter will be formatted accordingly
– One can now study which statement gets executed on which

thread
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Sample doc_event.rex
Option T (Thread)

     1 *-* .traceObject~option="T" -- show thread number in trace prefix
     2 *-1* event = .EventSemaphore~new
     3 *-1* say "main starts tasks"
main starts tasks
     4 *-1* do nr = 1 to 3
     5 *-1*   .task~new~waitFor(event, "task" nr)
       >I1> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
    14 *-1* reply
     6 *-1* end
       >I2> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
     4 *-1* do nr = 1 to 3
    15 *-2* use strict arg event, name
     5 *-1*   .task~new~waitFor(event, "task" nr)
    16 *-2* say name "waits"
task 1 waits
       >I1> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
    17 *-2* event~wait
    14 *-1* reply
     6 *-1* end
     4 *-1* do nr = 1 to 3
     5 *-1*   .task~new~waitFor(event, "task" nr)
       >I1> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
       >I3> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
    14 *-1* reply
    15 *-3* use strict arg event, name
     6 *-1* end
       >I4> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
    16 *-3* say name "waits"
task 2 waits
     4 *-1* do nr = 1 to 3
    15 *-4* use strict arg event, name
    17 *-3* event~wait
     7 *-1* call SysSleep 0.1
    16 *-4* say name "waits"
task 3 waits
    17 *-4* event~wait
     8 *-1* say "main posts"
main posts
     9 *-1* event~post
    10 *-1* say "main ends"
main ends
    18 *-4* say name "runs"
task 3 runs
    18 *-3* say name "runs"
task 2 runs
    18 *-2* say name "runs"
task 1 runs

Output (maybe):

.traceObject~option="T"
event = .EventSemaphore~new
say "main starts tasks"
do nr = 1 to 3
    .task~new~waitFor(event, "task" nr)
end
call SysSleep 0.1
say "main posts"
event~post
say "main ends"

::class Task
::method waitFor
    reply
    use strict arg event, name
    say name "waits"
    event~wait
    say name "runs"

::options trace all
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Changing Sample doc_event.rex
Option S (Standard)
● To get to see the standard additional bracketed trace information  one simply changes 

TraceObject's class attribute option to Standard (only the frst letter is needed) 
– Any trace output thereafter will be formatted accordingly
– The bracketed additional trace information letters indicate

● T: thread on which activity runs
● I: invocation identifer
● For method routines in addition

– G or U to indicate a guarded or an unguarded method
– L the number of object locks
– * the method owns the object's scope lock, else blank
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Sample doc_event.rex
Option S (Standard)

     1 *-* .traceObject~option="S" -- show thread number in trace prefix
[T1   I1   ]               2 *-* event = .EventSemaphore~new
[T1   I1   ]               3 *-* say "main starts tasks"
main starts tasks
[T1   I1   ]               4 *-* do nr = 1 to 3
[T1   I1   ]               5 *-*   .task~new~waitFor(event, "task" nr)
[T1   I2    G L0    ]        >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[T1   I2    G L1   *]     14 *-* reply
[T1   I1   ]               6 *-* end
[T2   I2    G L1   *]        >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[T1   I1   ]               4 *-* do nr = 1 to 3
[T2   I2    G L1   *]     15 *-* use strict arg event, name
[T1   I1   ]               5 *-*   .task~new~waitFor(event, "task" nr)
[T2   I2    G L1   *]     16 *-* say name "waits"
task 1 waits
[T1   I3    G L0    ]        >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[T2   I2    G L1   *]     17 *-* event~wait
[T1   I3    G L1   *]     14 *-* reply
[T1   I1   ]               6 *-* end
[T1   I1   ]               4 *-* do nr = 1 to 3
[T3   I3    G L1   *]        >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[T1   I1   ]               5 *-*   .task~new~waitFor(event, "task" nr)
[T3   I3    G L1   *]     15 *-* use strict arg event, name
[T1   I4    G L0    ]        >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[T3   I3    G L1   *]     16 *-* say name "waits"
task 2 waits
[T1   I4    G L1   *]     14 *-* reply
[T3   I3    G L1   *]     17 *-* event~wait
[T4   I4    G L1   *]        >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[T1   I1   ]               6 *-* end
[T4   I4    G L1   *]     15 *-* use strict arg event, name
[T1   I1   ]               4 *-* do nr = 1 to 3
[T4   I4    G L1   *]     16 *-* say name "waits"
task 3 waits
[T1   I1   ]               7 *-* call SysSleep 0.1
[T4   I4    G L1   *]     17 *-* event~wait
[T1   I1   ]               8 *-* say "main posts"
main posts
[T1   I1   ]               9 *-* event~post
[T1   I1   ]              10 *-* say "main ends"
main ends
[T3   I3    G L1   *]     18 *-* say name "runs"
[T2   I2    G L1   *]     18 *-* say name "runs"
task 2 runs
[T4   I4    G L1   *]     18 *-* say name "runs"
task 1 runs
task 3 runs

Output (maybe):

.traceObject~option="S"
event = .EventSemaphore~new
say "main starts tasks"
do nr = 1 to 3
    .task~new~waitFor(event, "task" nr)
end
call SysSleep 0.1
say "main posts"
event~post
say "main ends"

::class Task
::method waitFor
    reply
    use strict arg event, name
    say name "waits"
    event~wait
    say name "runs"

::options trace all
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Changing Sample doc_event.rex
Option F (Full)
● To get to see the standard additional bracketed trace information  one simply changes 

TraceObject's class attribute option to Full (only the frst letter is needed) 
– Any trace output thereafter will be formatted accordingly
– The bracketed additional trace information letters indicate

● R: Rexx interpreter instance that runs the activity
● T: thread on which activity runs
● I: invocation identifer
● For method routines in addition

– A the attribute (object variable) pool number
– G or U to indicate a guarded or an unguarded method
– L the number of object locks
– * the guarded method owns the object's scope lock, else blank
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Sample doc_event.rex
Option F (Full)

     1 *-* .traceObject~option="F" -- show thread number in trace prefix
[R1   T1   I1   ]                     2 *-* event = .EventSemaphore~new
[R1   T1   I1   ]                     3 *-* say "main starts tasks"
main starts tasks
[R1   T1   I1   ]                     4 *-* do nr = 1 to 3
[R1   T1   I1   ]                     5 *-*   .task~new~waitFor(event, "task" nr)
[R1   T1   I2    G A1    L0    ]        >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[R1   T1   I2    G A1    L1   *]     14 *-* reply
[R1   T1   I1   ]                     6 *-* end
[R1   T1   I1   ]                     4 *-* do nr = 1 to 3
[R1   T1   I1   ]                     5 *-*   .task~new~waitFor(event, "task" nr)
[R1   T1   I3    G A2    L0    ]        >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[R1   T1   I3    G A2    L1   *]     14 *-* reply
[R1   T2   I3    G A2    L1   *]        >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[R1   T2   I3    G A2    L1   *]     15 *-* use strict arg event, name
[R1   T2   I3    G A2    L1   *]     16 *-* say name "waits"
task 2 waits
[R1   T2   I3    G A2    L1   *]     17 *-* event~wait
[R1   T3   I2    G A1    L1   *]        >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[R1   T3   I2    G A1    L1   *]     15 *-* use strict arg event, name
[R1   T3   I2    G A1    L1   *]     16 *-* say name "waits"
task 1 waits
[R1   T3   I2    G A1    L1   *]     17 *-* event~wait
[R1   T1   I1   ]                     6 *-* end
[R1   T1   I1   ]                     4 *-* do nr = 1 to 3
[R1   T1   I1   ]                     5 *-*   .task~new~waitFor(event, "task" nr)
[R1   T1   I4    G A3    L0    ]        >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[R1   T1   I4    G A3    L1   *]     14 *-* reply
[R1   T1   I1   ]                     6 *-* end
[R1   T1   I1   ]                     4 *-* do nr = 1 to 3
[R1   T1   I1   ]                     7 *-* call SysSleep 0.1
[R1   T4   I4    G A3    L1   *]        >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[R1   T4   I4    G A3    L1   *]     15 *-* use strict arg event, name
[R1   T4   I4    G A3    L1   *]     16 *-* say name "waits"
task 3 waits
[R1   T4   I4    G A3    L1   *]     17 *-* event~wait
[R1   T1   I1   ]                     8 *-* say "main posts"
main posts
[R1   T1   I1   ]                     9 *-* event~post
[R1   T1   I1   ]                    10 *-* say "main ends"
main ends
[R1   T4   I4    G A3    L1   *]     18 *-* say name "runs"
task 3 runs
[R1   T2   I3    G A2    L1   *]     18 *-* say name "runs"
task 2 runs
[R1   T3   I2    G A1    L1   *]     18 *-* say name "runs"
task 1 runs

Output (maybe):

.traceObject~option="F"
event = .EventSemaphore~new
say "main starts tasks"
do nr = 1 to 3
    .task~new~waitFor(event, "task" nr)
end
call SysSleep 0.1
say "main posts"
event~post
say "main ends"

::class Task
::method waitFor
    reply
    use strict arg event, name
    say name "waits"
    event~wait
    say name "runs"

::options trace all
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Customize Trace Output
doc_event_mkStr.rex

● It is possible to tailor the trace output
– Create a routine that fetches  the traceObject as its single argument
– Use the information in the traceObject to your likings
– Create a string that meets your debugging needs and return it
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Customize Trace Output
doc_event_mkStr.rex

     2 *-* .traceObject~setMakeString(.resources~myMTprefix)
#   2, 22:27:11.562507, T1:      3 *-* event = .EventSemaphore~new
#   3, 22:27:11.562645, T1:      4 *-* say "main starts tasks"
main starts tasks
#   4, 22:27:11.562749, T1:      5 *-* do nr = 1 to 3
#   5, 22:27:11.562822, T1:      6 *-*   .task~new~waitFor(event, "task" nr)
#   6, 22:27:11.562909, T1:        >I> Method "WAITFOR" with scope "TASK" in package "doc_event_mkStr.rex".
#   7, 22:27:11.562968, T1:     15 *-* reply
#   8, 22:27:11.563064, T1:      7 *-* end
#   9, 22:27:11.563128, T1:      5 *-* do nr = 1 to 3
#  10, 22:27:11.563200, T1:      6 *-*   .task~new~waitFor(event, "task" nr)
#  11, 22:27:11.563259, T1:        >I> Method "WAITFOR" with scope "TASK" n package "doc_event_mkStr.rex".
#  12, 22:27:11.563321, T1:     15 *-* reply
#  13, 22:27:11.563425, T2:        >I> Method "WAITFOR" with scope "TASK" n package "doc_event_mkStr.rex".
#  14, 22:27:11.563505, T1:      7 *-* end
#  15, 22:27:11.563548, T2:     16 *-* use strict arg event, name
#  16, 22:27:11.563583, T3:        >I> Method "WAITFOR" with scope "TASK" n package "doc_event_mkStr.rex".
#  17, 22:27:11.563688, T1:      5 *-* do nr = 1 to 3
#  18, 22:27:11.563788, T2:     17 *-* say name "waits"
task 2 waits
#  19, 22:27:11.563908, T3:     16 *-* use strict arg event, name
#  20, 22:27:11.564005, T1:      6 *-*   .task~new~waitFor(event, "task" nr)
#  21, 22:27:11.564084, T2:     18 *-* event~wait
#  22, 22:27:11.564179, T3:     17 *-* say name "waits"
task 1 waits
#  23, 22:27:11.564262, T1:        >I> Method "WAITFOR" with scope "TASK" in package "doc_event_mkStr.rex".
#  24, 22:27:11.564412, T3:     18 *-* event~wait
#  25, 22:27:11.564510, T1:     15 *-* reply
#  26, 22:27:11.564704, T1:      7 *-* end
#  27, 22:27:11.564841, T4:        >I> Method "WAITFOR" with scope "TASK" in package "doc_event_mkStr.rex".
#  28, 22:27:11.564882, T1:      5 *-* do nr = 1 to 3
#  29, 22:27:11.564983, T4:     16 *-* use strict arg event, name
#  30, 22:27:11.565091, T1:      8 *-* call SysSleep 0.1
#  31, 22:27:11.565159, T4:     17 *-* say name "waits"
task 3 waits
#  32, 22:27:11.565619, T4:     18 *-* event~wait
#  33, 22:27:11.670017, T1:      9 *-* say "main posts"
main posts
#  34, 22:27:11.670196, T1:     10 *-* event~post
#  35, 22:27:11.670331, T1:     11 *-* say "main ends"
main ends
#  36, 22:27:11.670484, T3:     19 *-* say name "runs"
task 1 runs
#  37, 22:27:11.670638, T2:     19 *-* say name "runs"
task 2 runs
#  38, 22:27:11.670836, T4:     19 *-* say name "runs"
task 3 runs

Output (maybe):

-- set to the code of the  myMTprefix resource
.traceObject~setMakeString(.resources~myMTprefix)
event = .EventSemaphore~new
say "main starts tasks"
do nr = 1 to 3
    .task~new~waitFor(event, "task" nr)
end
call SysSleep 0.1
say "main posts"
event~post
say "main ends"

::class Task
::method waitFor
    reply
    use strict arg event, name
    say name "waits"
    event~wait
    say name "runs"

::options trace all

::RESOURCE myMTprefix   -- define own trace format
  use arg traceObj      -- fetch traceObject
  tod=traceObj["TIMESTAMP"]~timeOfDay
  return '#' adjRight(traceObj["NR"])"," tod"," -
         "T"traceObj["THREAD"]":" traceObj["TRACELINE"]
  adjRight: procedure   -- adjust right
    use strict arg value, width=3
    if value~length>=width then return value
    return value~right(width)
::END
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Changing Sample doc_event.rex
Option P (Profling/Probing)

● Complex MT programs may need to be analyzed programmatically
● To do so

– Use the ::OPTIONS TRACE directive to activate tracing
– Set the TraceObject class attribute collector

● The collector object needs to understand the message append
– E.g. all OrderedCollection classes of ooRexx can be used

– Set the TraceObject class attribute option to P 
● Note: the following sample then uses traceutil.cls (WIP: work in

progress) to create a CSV fle from the collected traceObjects for
documentation or for further analysis e.g. with a spreadsheet
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Changing Sample doc_event.rex
Option P (Profling/Probing)

     1 *-* .traceObject~collector=.array~new   -- from now on collecting
     2 *-* .traceObject~option="P" -- do not display trace
main starts tasks
task 2 waits
task 1 waits
task 3 waits
main posts
main ends
task 1 runs
task 3 runs
task 2 runs

Output (maybe):.traceObject~collector=.array~new   -- from now on collecting
.traceObject~option="P" -- do not display trace
event = .EventSemaphore~new
say "main starts tasks"
do nr = 1 to 3
    .task~new~waitFor(event, "task" nr)
end
call SysSleep 0.1
say "main posts"
event~post
say "main ends"
trace n                 -- no tracing from here on
call SysSleep 0.1       -- let threads end
say "--- now creating a CSV file (tmp.csv) ..."
call toCsvFile  "tmp.csv",  .traceObject~collector

::class Task
::method waitFor
    reply   -- returns to caller
    use strict arg event, name
    say name "waits"
    event~wait
    say name "runs"

::requires "traceutil.cls"  --  toCsvFile(), WIP
::options trace all

option,nr,timestamp,interpreter,thread,invocation,isGuarded,attributePool,objectLockCount,hasObjectLock,traceline
"N","2","2024-02-28T18:00:24.248185","1","1","1",,,,,"     2 *-* .traceObject~option=""P"" -- do not display trace"
"P","3","2024-02-28T18:00:24.248218","1","1","1",,,,,"     3 *-* event = .EventSemaphore~new"
"P","4","2024-02-28T18:00:24.248235","1","1","1",,,,,"     4 *-* say ""main starts tasks"""
"P","5","2024-02-28T18:00:24.248255","1","1","1",,,,,"     5 *-* do nr = 1 to 3"
"P","6","2024-02-28T18:00:24.248269","1","1","1",,,,,"     6 *-*   .task~new~waitFor(event, ""task"" nr)"
… cut … 

tmp.csv (maybe):
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Roundup

● New TraceObject class (subclass of StringTable) in ooRexx 5.1.0beta 
– For each trace a TraceObject gets created and flled in with the trace information
– The class attribute option allows for changing the output to include MT related

information to help debug MT programs
– The class attribute collector allows for collecting all created TraceObjects for

documenttion or later analysis 

● traceutils.cls defnes utility routines, e.g. storing (and reading)
collected traceObjects in (from)  CSV and JSON text fles
– WIP: work in progress
– Planned to come up with a routine that possilby flags deadlocks

● Can be used for analyzing (profling) classic Rexx programs!
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