
Vienna University of Economics and Business ▪ Welthandelsplatz 1, D2-C ▪ A-1020 Vienna Prof. Rony G. Flatscher

Department of Information Systems
and Operations Management

Debugging Multithreaded ooRexx Programs
Making TRACE Even More Powerful

The 2024 International Rexx Symposium
Brisbane, Queensland, Australia

March 3rd – March 6th 2024

2 Prof. Rony G. Flatscher

Overview

● Bird eye's view of multithreading (MT) concepts in ooRexx
● ooRexx and TRACE
● The new TraceObject class in ooRexx 5.1.0beta
● Some examples
● Roundup

3 Prof. Rony G. Flatscher

Bird Eye's View of MT in ooRexx

● ooRexx is a multithreaded programming language
– Keyword statement REPLY returns from a method, but has the remainder of that

method execute in parallel as a new activity on a new thread
– Keyword statement GUARD

● Controls whether guarded method routines of the same class (“scope”) get serialized
using the object's scope lock as a semaphore

● By default method routines are guarded but the programmer can override this default
● The keyword GUARD allows to change the state of a method from guarded to

unguarded and vice versa
● Unguarded method routines can always run in parallel to any other method defned in

the same class (“scope”)
– Using the start method of the Message or Object class allows to dispatch

messages on a new thread to carry out the desired activity

4 Prof. Rony G. Flatscher

TRACE, 1

● Tracing in Rexx – and therefore in its successor ooRexx – is a very
powerful means to analyze and to understand what the ooRexx code
does at runtime

● There is a TRACE keyword statement and a TRACE() built-in-function
(BIF) to control tracing of ooRexx programs, both offering the options:
– All: the statement will be traced (shown) before it gets executed
– Commands: the command will be traced (shown) before it gets executed, in case

of an error or failure condition the command's return code will be displayed
– Error: traces a command with an error or failure condition together with the return

code after it got executed
– Failure: traces a command with a failure condition together with the return code

after it got executed; this option is a synonym for option Normal which is in effect
by default

5 Prof. Rony G. Flatscher

TRACE, 2

● Options (continued)
– Intermediates: traces (shows) all clauses before they get executed, traces the

results of expressions and of name substitutions
– Labels: traces method and routine invocations, internal subroutine calls, transfer

of control using the SIGNAL keyword instruction and labels passed during
program execution

– Normal: sets tracing to trace failures in commands, unless the ooRexx ::OPTIONS
TRACE directive sets a different program wide default option

– Off: traces nothing and sets the trace prefx option to off
– Results: traces all statements before execution, displays values assigned during

ARG, PARSE, PULL and USE and the fnal result

6 Prof. Rony G. Flatscher

::OPTIONS TRACE, 2

● The ::OPTIONS directive statement of ooRexx allows to defne the
default trace option for the entire program
– Its TRACE subkeyword is followed by one of the aforementioned trace options

7 Prof. Rony G. Flatscher

Sample doc_event.rex, 1

● The ooRexx reference book (rexxref.pdf) includes a multithreaded
sample in section “5.4.7. EventSemaphore Class” to demonstrate how
one can use an event semaphore to synchronize the threads (activities)
– The main program creates an event semaphore
– It then creates a few instances of a class named Task and sends each a waitFor

message which will cause the receiving objects to invoke the method waitFor
defned in the class Task

– The method waitFor will
● Return immediately control to the main program using the REPLY keyword statement
● On a new thread it will fetch the supplied arguments, output its supplied name and then

waits for the event semaphore to be posted by the main program
– After the loop and a short sleep the main program will post the event semaphore

releasing all the threads that have been waiting for this event to happen

8 Prof. Rony G. Flatscher

Sample doc_event.rex, No Trace 2

main starts tasks
task 1 waits
task 2 waits
task 3 waits
main posts
main ends
task 1 runs
task 3 runs
task 2 runs

Output (last three lines may be shown in a different sequence):say "main starts tasks"
do nr = 1 to 3 -- create tasks that wait on semaphore
 .task~new~waitFor(event, "task" nr) -- create object, send
message
end
call SysSleep 0.1 -- sleep a bit
say "main posts"
event~post -- now post the event semaphore
say "main ends"

::class Task
::method waitFor
 reply -- returns to caller, remaining code runs on new thread
 use strict arg event, name -- fetch event semaphore and name
 say name "waits"
 event~wait -- wait until semaphore gets posted
 say name "runs"

9 Prof. Rony G. Flatscher

Sample doc_event.rex
Trace All, 3

 2 *-* event = .EventSemaphore~new
 3 *-* say "main starts tasks"
main starts tasks
 4 *-* do nr = 1 to 3
 5 *-* .task~new~waitFor(event, "task" nr)
 >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
 14 *-* reply
 6 *-* end
 >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
 4 *-* do nr = 1 to 3
 15 *-* use strict arg event, name
 5 *-* .task~new~waitFor(event, "task" nr)
 16 *-* say name "waits"
task 1 waits
 >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
 17 *-* event~wait
 14 *-* reply
 6 *-* end
 4 *-* do nr = 1 to 3
 5 *-* .task~new~waitFor(event, "task" nr)
 >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
 14 *-* reply
 >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
 6 *-* end
 >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
 15 *-* use strict arg event, name
 4 *-* do nr = 1 to 3
 15 *-* use strict arg event, name
 16 *-* say name "waits"
task 2 waits
 7 *-* call SysSleep 0.1
 16 *-* say name "waits"
task 3 waits
 17 *-* event~wait
 17 *-* event~wait
 8 *-* say "main posts"
main posts
 9 *-* event~post
 10 *-* say "main ends"
main ends
 18 *-* say name "runs"
task 2 runs
 18 *-* say name "runs"
task 3 runs
 18 *-* say name "runs"
task 1 runs

Output (maybe):

-- doc_event.rex
event = .EventSemaphore~new
say "main starts tasks"
do nr = 1 to 3
 .task~new~waitFor(event, "task" nr)
end
call SysSleep 0.1
say "main posts"
event~post
say "main ends"

::class Task
::method waitFor
 reply
 use strict arg event, name
 say name "waits"
 event~wait
 say name "runs"

::options trace all

10 Prof. Rony G. Flatscher

Some Remarks

● TRACE works in multithreaded programs as well!
● However the trace prefx does not include any thread related

information like
– Thread number
– Which of the guarded methods owns the object's scope lock, which one must wait

for it (or with other words which guarded method is currently blocked)

● In complex ooRexx deployments the following information in the trace
prefx may be helpful for debugging MT programs additionally
– Which Rexx interpreter instance executes the statement, which invocation

identifer is the current statement located at, which method runs against which
attribute pool (i.e. for which object, instance)

11 Prof. Rony G. Flatscher

New TraceObject Class, 1

● ooRexx 5.1.0beta introduces a new class: TraceObject (a subclass of
StringTable)

● TRACE will create an instance of this class and flls in all trace related
information, including multithreaded related ones (see next slide)

● TraceObject defnes the following class attributes
– collector – by default .nil, if set to an object that understands the append message

each created TraceObject will be appended to it
– counter – keeps a count of created TraceObjects
– option - allows to set an option (only the frst character gets used): Normal

(default), Profling, Thread, Standard, Full

12 Prof. Rony G. Flatscher

New TraceObject Class, 2

● TraceObject has a makeString method that returns by default a string
formatted in the classic trace layout using the contained information
– One can use the TraceObject class method setMakeString(myMakeString) to

change the method and unsetMakeString() to use the default implementation
– The default makeString implementation of TraceObject, if its class attribute option

is currently set to
● 'N' (normal) or 'P' (profling/probing) then the normal trace string (trace prefx plus the

traced line) gets returned
● 'T' (thread) then the return string consists of the trace prefx with the thread number

inserted after its second character and then concatenated with the trace line
● 'S' (standard) or 'F' (full): the normal trace string gets prepended with additional square

bracketed information

13 Prof. Rony G. Flatscher

New TraceObject Class, 3

● A TraceObject instance will have entries with the following indexes
– ATTRIBUTEPOOL

● a number, makeString prepends it with the letter A if option is set to F
– HASOBJECTLOCK (may be subject to be renamed to HASSCOPELOCK)

● .true/.false, makeString uses an asterisk, if .true, a blank character else if option is set to F
– INTERPRETER

● a number, makeString prepends it with the letter R if option is set to F
– INVOCATION

● a number, makeString prepends it with the letter I if option is set to F or S
– ISGUARDED

● .true/.false, makeString uses the letter G, if .true, the letter U else if option is set to F or S
– NR

● a sequential whole number, the default makeString implementation does not use it

14 Prof. Rony G. Flatscher

New TraceObject Class, 4

● A TraceObject instance will have entries with the following indexes
(continued)
– OBJECTLOCKCOUNT (may be subject to be renamed to SCOPELOCKCOUNT)

● a number, makeString prepends it with the letter L if option is set to F or S
– OPTION

● The value of the class attribute option that was in effect when this instance got created,
the default makeString implementation does not use it

– THREAD
● a number, makeString prepends it with the letter T if option is set to F or S, or the number

gets inserted in the trace prefx if option is set to T

15 Prof. Rony G. Flatscher

New TraceObject Class, 5

● A TraceObject instance will have entries with the following indexes
(continued)
– TIMESTAMP

● A DateTime instance representing the creation date and time of this TraceObject instance,
the default makeString implementation does not use it

– TRACELINE
● The trace line string

16 Prof. Rony G. Flatscher

Changing Sample doc_event.rex
Option T (Thread)
● To get to see the thread number one simply changes TraceObject's

class attribute option to Thread (only the frst letter is needed)
– Any trace output thereafter will be formatted accordingly
– One can now study which statement gets executed on which

thread

17 Prof. Rony G. Flatscher

Sample doc_event.rex
Option T (Thread)

 1 *-* .traceObject~option="T" -- show thread number in trace prefix
 2 *-1* event = .EventSemaphore~new
 3 *-1* say "main starts tasks"
main starts tasks
 4 *-1* do nr = 1 to 3
 5 *-1* .task~new~waitFor(event, "task" nr)
 >I1> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
 14 *-1* reply
 6 *-1* end
 >I2> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
 4 *-1* do nr = 1 to 3
 15 *-2* use strict arg event, name
 5 *-1* .task~new~waitFor(event, "task" nr)
 16 *-2* say name "waits"
task 1 waits
 >I1> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
 17 *-2* event~wait
 14 *-1* reply
 6 *-1* end
 4 *-1* do nr = 1 to 3
 5 *-1* .task~new~waitFor(event, "task" nr)
 >I1> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
 >I3> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
 14 *-1* reply
 15 *-3* use strict arg event, name
 6 *-1* end
 >I4> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
 16 *-3* say name "waits"
task 2 waits
 4 *-1* do nr = 1 to 3
 15 *-4* use strict arg event, name
 17 *-3* event~wait
 7 *-1* call SysSleep 0.1
 16 *-4* say name "waits"
task 3 waits
 17 *-4* event~wait
 8 *-1* say "main posts"
main posts
 9 *-1* event~post
 10 *-1* say "main ends"
main ends
 18 *-4* say name "runs"
task 3 runs
 18 *-3* say name "runs"
task 2 runs
 18 *-2* say name "runs"
task 1 runs

Output (maybe):

.traceObject~option="T"
event = .EventSemaphore~new
say "main starts tasks"
do nr = 1 to 3
 .task~new~waitFor(event, "task" nr)
end
call SysSleep 0.1
say "main posts"
event~post
say "main ends"

::class Task
::method waitFor
 reply
 use strict arg event, name
 say name "waits"
 event~wait
 say name "runs"

::options trace all

18 Prof. Rony G. Flatscher

Changing Sample doc_event.rex
Option S (Standard)
● To get to see the standard additional bracketed trace information one simply changes

TraceObject's class attribute option to Standard (only the frst letter is needed)
– Any trace output thereafter will be formatted accordingly
– The bracketed additional trace information letters indicate

● T: thread on which activity runs
● I: invocation identifer
● For method routines in addition

– G or U to indicate a guarded or an unguarded method
– L the number of object locks
– * the method owns the object's scope lock, else blank

19 Prof. Rony G. Flatscher

Sample doc_event.rex
Option S (Standard)

 1 *-* .traceObject~option="S" -- show thread number in trace prefix
[T1 I1] 2 *-* event = .EventSemaphore~new
[T1 I1] 3 *-* say "main starts tasks"
main starts tasks
[T1 I1] 4 *-* do nr = 1 to 3
[T1 I1] 5 *-* .task~new~waitFor(event, "task" nr)
[T1 I2 G L0] >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[T1 I2 G L1 *] 14 *-* reply
[T1 I1] 6 *-* end
[T2 I2 G L1 *] >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[T1 I1] 4 *-* do nr = 1 to 3
[T2 I2 G L1 *] 15 *-* use strict arg event, name
[T1 I1] 5 *-* .task~new~waitFor(event, "task" nr)
[T2 I2 G L1 *] 16 *-* say name "waits"
task 1 waits
[T1 I3 G L0] >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[T2 I2 G L1 *] 17 *-* event~wait
[T1 I3 G L1 *] 14 *-* reply
[T1 I1] 6 *-* end
[T1 I1] 4 *-* do nr = 1 to 3
[T3 I3 G L1 *] >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[T1 I1] 5 *-* .task~new~waitFor(event, "task" nr)
[T3 I3 G L1 *] 15 *-* use strict arg event, name
[T1 I4 G L0] >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[T3 I3 G L1 *] 16 *-* say name "waits"
task 2 waits
[T1 I4 G L1 *] 14 *-* reply
[T3 I3 G L1 *] 17 *-* event~wait
[T4 I4 G L1 *] >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[T1 I1] 6 *-* end
[T4 I4 G L1 *] 15 *-* use strict arg event, name
[T1 I1] 4 *-* do nr = 1 to 3
[T4 I4 G L1 *] 16 *-* say name "waits"
task 3 waits
[T1 I1] 7 *-* call SysSleep 0.1
[T4 I4 G L1 *] 17 *-* event~wait
[T1 I1] 8 *-* say "main posts"
main posts
[T1 I1] 9 *-* event~post
[T1 I1] 10 *-* say "main ends"
main ends
[T3 I3 G L1 *] 18 *-* say name "runs"
[T2 I2 G L1 *] 18 *-* say name "runs"
task 2 runs
[T4 I4 G L1 *] 18 *-* say name "runs"
task 1 runs
task 3 runs

Output (maybe):

.traceObject~option="S"
event = .EventSemaphore~new
say "main starts tasks"
do nr = 1 to 3
 .task~new~waitFor(event, "task" nr)
end
call SysSleep 0.1
say "main posts"
event~post
say "main ends"

::class Task
::method waitFor
 reply
 use strict arg event, name
 say name "waits"
 event~wait
 say name "runs"

::options trace all

20 Prof. Rony G. Flatscher

Changing Sample doc_event.rex
Option F (Full)
● To get to see the standard additional bracketed trace information one simply changes

TraceObject's class attribute option to Full (only the frst letter is needed)
– Any trace output thereafter will be formatted accordingly
– The bracketed additional trace information letters indicate

● R: Rexx interpreter instance that runs the activity
● T: thread on which activity runs
● I: invocation identifer
● For method routines in addition

– A the attribute (object variable) pool number
– G or U to indicate a guarded or an unguarded method
– L the number of object locks
– * the guarded method owns the object's scope lock, else blank

21 Prof. Rony G. Flatscher

Sample doc_event.rex
Option F (Full)

 1 *-* .traceObject~option="F" -- show thread number in trace prefix
[R1 T1 I1] 2 *-* event = .EventSemaphore~new
[R1 T1 I1] 3 *-* say "main starts tasks"
main starts tasks
[R1 T1 I1] 4 *-* do nr = 1 to 3
[R1 T1 I1] 5 *-* .task~new~waitFor(event, "task" nr)
[R1 T1 I2 G A1 L0] >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[R1 T1 I2 G A1 L1 *] 14 *-* reply
[R1 T1 I1] 6 *-* end
[R1 T1 I1] 4 *-* do nr = 1 to 3
[R1 T1 I1] 5 *-* .task~new~waitFor(event, "task" nr)
[R1 T1 I3 G A2 L0] >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[R1 T1 I3 G A2 L1 *] 14 *-* reply
[R1 T2 I3 G A2 L1 *] >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[R1 T2 I3 G A2 L1 *] 15 *-* use strict arg event, name
[R1 T2 I3 G A2 L1 *] 16 *-* say name "waits"
task 2 waits
[R1 T2 I3 G A2 L1 *] 17 *-* event~wait
[R1 T3 I2 G A1 L1 *] >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[R1 T3 I2 G A1 L1 *] 15 *-* use strict arg event, name
[R1 T3 I2 G A1 L1 *] 16 *-* say name "waits"
task 1 waits
[R1 T3 I2 G A1 L1 *] 17 *-* event~wait
[R1 T1 I1] 6 *-* end
[R1 T1 I1] 4 *-* do nr = 1 to 3
[R1 T1 I1] 5 *-* .task~new~waitFor(event, "task" nr)
[R1 T1 I4 G A3 L0] >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[R1 T1 I4 G A3 L1 *] 14 *-* reply
[R1 T1 I1] 6 *-* end
[R1 T1 I1] 4 *-* do nr = 1 to 3
[R1 T1 I1] 7 *-* call SysSleep 0.1
[R1 T4 I4 G A3 L1 *] >I> Method "WAITFOR" with scope "TASK" in package "doc_event.rex".
[R1 T4 I4 G A3 L1 *] 15 *-* use strict arg event, name
[R1 T4 I4 G A3 L1 *] 16 *-* say name "waits"
task 3 waits
[R1 T4 I4 G A3 L1 *] 17 *-* event~wait
[R1 T1 I1] 8 *-* say "main posts"
main posts
[R1 T1 I1] 9 *-* event~post
[R1 T1 I1] 10 *-* say "main ends"
main ends
[R1 T4 I4 G A3 L1 *] 18 *-* say name "runs"
task 3 runs
[R1 T2 I3 G A2 L1 *] 18 *-* say name "runs"
task 2 runs
[R1 T3 I2 G A1 L1 *] 18 *-* say name "runs"
task 1 runs

Output (maybe):

.traceObject~option="F"
event = .EventSemaphore~new
say "main starts tasks"
do nr = 1 to 3
 .task~new~waitFor(event, "task" nr)
end
call SysSleep 0.1
say "main posts"
event~post
say "main ends"

::class Task
::method waitFor
 reply
 use strict arg event, name
 say name "waits"
 event~wait
 say name "runs"

::options trace all

22 Prof. Rony G. Flatscher

Customize Trace Output
doc_event_mkStr.rex

● It is possible to tailor the trace output
– Create a routine that fetches the traceObject as its single argument
– Use the information in the traceObject to your likings
– Create a string that meets your debugging needs and return it

23 Prof. Rony G. Flatscher

Customize Trace Output
doc_event_mkStr.rex

 2 *-* .traceObject~setMakeString(.resources~myMTprefix)
2, 22:27:11.562507, T1: 3 *-* event = .EventSemaphore~new
3, 22:27:11.562645, T1: 4 *-* say "main starts tasks"
main starts tasks
4, 22:27:11.562749, T1: 5 *-* do nr = 1 to 3
5, 22:27:11.562822, T1: 6 *-* .task~new~waitFor(event, "task" nr)
6, 22:27:11.562909, T1: >I> Method "WAITFOR" with scope "TASK" in package "doc_event_mkStr.rex".
7, 22:27:11.562968, T1: 15 *-* reply
8, 22:27:11.563064, T1: 7 *-* end
9, 22:27:11.563128, T1: 5 *-* do nr = 1 to 3
10, 22:27:11.563200, T1: 6 *-* .task~new~waitFor(event, "task" nr)
11, 22:27:11.563259, T1: >I> Method "WAITFOR" with scope "TASK" n package "doc_event_mkStr.rex".
12, 22:27:11.563321, T1: 15 *-* reply
13, 22:27:11.563425, T2: >I> Method "WAITFOR" with scope "TASK" n package "doc_event_mkStr.rex".
14, 22:27:11.563505, T1: 7 *-* end
15, 22:27:11.563548, T2: 16 *-* use strict arg event, name
16, 22:27:11.563583, T3: >I> Method "WAITFOR" with scope "TASK" n package "doc_event_mkStr.rex".
17, 22:27:11.563688, T1: 5 *-* do nr = 1 to 3
18, 22:27:11.563788, T2: 17 *-* say name "waits"
task 2 waits
19, 22:27:11.563908, T3: 16 *-* use strict arg event, name
20, 22:27:11.564005, T1: 6 *-* .task~new~waitFor(event, "task" nr)
21, 22:27:11.564084, T2: 18 *-* event~wait
22, 22:27:11.564179, T3: 17 *-* say name "waits"
task 1 waits
23, 22:27:11.564262, T1: >I> Method "WAITFOR" with scope "TASK" in package "doc_event_mkStr.rex".
24, 22:27:11.564412, T3: 18 *-* event~wait
25, 22:27:11.564510, T1: 15 *-* reply
26, 22:27:11.564704, T1: 7 *-* end
27, 22:27:11.564841, T4: >I> Method "WAITFOR" with scope "TASK" in package "doc_event_mkStr.rex".
28, 22:27:11.564882, T1: 5 *-* do nr = 1 to 3
29, 22:27:11.564983, T4: 16 *-* use strict arg event, name
30, 22:27:11.565091, T1: 8 *-* call SysSleep 0.1
31, 22:27:11.565159, T4: 17 *-* say name "waits"
task 3 waits
32, 22:27:11.565619, T4: 18 *-* event~wait
33, 22:27:11.670017, T1: 9 *-* say "main posts"
main posts
34, 22:27:11.670196, T1: 10 *-* event~post
35, 22:27:11.670331, T1: 11 *-* say "main ends"
main ends
36, 22:27:11.670484, T3: 19 *-* say name "runs"
task 1 runs
37, 22:27:11.670638, T2: 19 *-* say name "runs"
task 2 runs
38, 22:27:11.670836, T4: 19 *-* say name "runs"
task 3 runs

Output (maybe):

-- set to the code of the myMTprefix resource
.traceObject~setMakeString(.resources~myMTprefix)
event = .EventSemaphore~new
say "main starts tasks"
do nr = 1 to 3
 .task~new~waitFor(event, "task" nr)
end
call SysSleep 0.1
say "main posts"
event~post
say "main ends"

::class Task
::method waitFor
 reply
 use strict arg event, name
 say name "waits"
 event~wait
 say name "runs"

::options trace all

::RESOURCE myMTprefix -- define own trace format
 use arg traceObj -- fetch traceObject
 tod=traceObj["TIMESTAMP"]~timeOfDay
 return '#' adjRight(traceObj["NR"])"," tod"," -
 "T"traceObj["THREAD"]":" traceObj["TRACELINE"]
 adjRight: procedure -- adjust right
 use strict arg value, width=3
 if value~length>=width then return value
 return value~right(width)
::END

24 Prof. Rony G. Flatscher

Changing Sample doc_event.rex
Option P (Profling/Probing)

● Complex MT programs may need to be analyzed programmatically
● To do so

– Use the ::OPTIONS TRACE directive to activate tracing
– Set the TraceObject class attribute collector

● The collector object needs to understand the message append
– E.g. all OrderedCollection classes of ooRexx can be used

– Set the TraceObject class attribute option to P
● Note: the following sample then uses traceutil.cls (WIP: work in

progress) to create a CSV fle from the collected traceObjects for
documentation or for further analysis e.g. with a spreadsheet

25 Prof. Rony G. Flatscher

Changing Sample doc_event.rex
Option P (Profling/Probing)

 1 *-* .traceObject~collector=.array~new -- from now on collecting
 2 *-* .traceObject~option="P" -- do not display trace
main starts tasks
task 2 waits
task 1 waits
task 3 waits
main posts
main ends
task 1 runs
task 3 runs
task 2 runs

Output (maybe):.traceObject~collector=.array~new -- from now on collecting
.traceObject~option="P" -- do not display trace
event = .EventSemaphore~new
say "main starts tasks"
do nr = 1 to 3
 .task~new~waitFor(event, "task" nr)
end
call SysSleep 0.1
say "main posts"
event~post
say "main ends"
trace n -- no tracing from here on
call SysSleep 0.1 -- let threads end
say "--- now creating a CSV file (tmp.csv) ..."
call toCsvFile "tmp.csv", .traceObject~collector

::class Task
::method waitFor
 reply -- returns to caller
 use strict arg event, name
 say name "waits"
 event~wait
 say name "runs"

::requires "traceutil.cls" -- toCsvFile(), WIP
::options trace all

option,nr,timestamp,interpreter,thread,invocation,isGuarded,attributePool,objectLockCount,hasObjectLock,traceline
"N","2","2024-02-28T18:00:24.248185","1","1","1",,,,," 2 *-* .traceObject~option=""P"" -- do not display trace"
"P","3","2024-02-28T18:00:24.248218","1","1","1",,,,," 3 *-* event = .EventSemaphore~new"
"P","4","2024-02-28T18:00:24.248235","1","1","1",,,,," 4 *-* say ""main starts tasks"""
"P","5","2024-02-28T18:00:24.248255","1","1","1",,,,," 5 *-* do nr = 1 to 3"
"P","6","2024-02-28T18:00:24.248269","1","1","1",,,,," 6 *-* .task~new~waitFor(event, ""task"" nr)"
… cut …

tmp.csv (maybe):

26 Prof. Rony G. Flatscher

Roundup

● New TraceObject class (subclass of StringTable) in ooRexx 5.1.0beta
– For each trace a TraceObject gets created and flled in with the trace information
– The class attribute option allows for changing the output to include MT related

information to help debug MT programs
– The class attribute collector allows for collecting all created TraceObjects for

documenttion or later analysis

● traceutils.cls defnes utility routines, e.g. storing (and reading)
collected traceObjects in (from) CSV and JSON text fles
– WIP: work in progress
– Planned to come up with a routine that possilby flags deadlocks

● Can be used for analyzing (profling) classic Rexx programs!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

