
Vienna University of Economics and Business ▪  Welthandelsplatz 1, D2-C ▪ A-1020 Vienna         Prof. Rony G. Flatscher

Department of Information Systems 
and Operations Management 

ooRexx and Character Sets (Dealing with UTF-8)

Available Options for Dealing Correctly with Character Sets

The 2024 International Rexx Symposium
Brisbane, Queensland, Australia

March 3rd – March 6th 2024



2 Prof. Rony G. Flatscher

7-Bit Codepage: ASCII

● Codepage: encoding of characters in a specifc manner
● ASCII codepage (cf. https://en.wikipedia.org/wiki/ASCII) 

– "American Standard Code for Information Interchange "
– 7-Bit code allows for 128 different codepoints (2**7) 

● Numbered from "0" through "127" (decimal) or "00" through "7F" (hexadecimal)
● First 32 characters (decimal "0" through "31", hexadecimal "00" through "1F") and

last character (decimal "127", hexadecimal "7F") defned for "control characters",
also dubbed "non-printable characters"

– e.g. for telex machines and typewriters like "bell" (decimal "7", hexadecimal "07"), "carriage
return" (decimal "13", hexadecimal "0D"), "line feed" (decimal "10", hexadecimal "0A"),
"horizontal tabulator" (decimal "09", hexadecimal "09"), …

● All other codepoints are for "printable characters" including space
– American English standard, hence no non-English characters!



3 Prof. Rony G. Flatscher

8-Bit Codepages: DOS and Windows

● 8-bit (2**8) doubles available codepoints from 128 to 256 !
– A computer byte consists of 8 bits, hence able to represent an 8-bit character 
– The additional 128 codepoints can be used for assigning codepoints to e.g. German

characters, box/drawing characters, Greek characters and more …
● However, worldwide there are many, many more characters than codepoints available!

– Computer companies like IBM or Microsoft defned various 8-bit codepages
● The frst 128 codepoints may be defned to be the ASCII encoding
● The second 128 codepoints got used for characters for spefc regions, e.g.

– DOS Codepage 437: ASCII plus Western European characters and special characters
● Cf. https://en.wikipedia.org/wiki/Code_page_437 

– DOS Codepage 850: ASCII plus Western European characters and special characters
● Cf. https://en.wikipedia.org/wiki/Code_page_850 

– Windows Codepage 1252: ASCII plus Western European characters and special characters
● Cf. https://en.wikipedia.org/wiki/Windows-1252 



4 Prof. Rony G. Flatscher

8-Bit Codepages: Encoding Problems, 1

● Some characters may not be available at all in a certain codepage
● The same characters may be placed at different codepoints in

different codepages
– Example: encoding the lowercase German umlaut "ü"

– DOS Codepage 437/850: codepoint "129" (decimal), hexadecimal "81" 
– Windows Codepage 1252: codepoint "252" (decimal), hexadecimal "FC"

● Text with German umlauts encoded in one codepage may not display the expected
German umlaut characters in a different codepage!

– In general all characters in the upper 128 codepoints of an 8-bit codepage can
only be displayed (processed) correctly if using the same codepage 



5 Prof. Rony G. Flatscher

say "umlaut-u in 437/850 codepage has codepoint 129 (81 hex):"
do cp over 437, 850, 1252
   address system "chcp" cp
   say "Codepage" cp":" "hex 81:" 81~x2c "decimal: 129:" 129~d2c
end
say

say "umlaut-u in 1252 codepage has codepoint 252 (FC hex):"
do cp over 437, 850, 1252
   address system "chcp" cp
   say "Codepage" cp":" "hex FC:" FC~x2c "decimal: 252:" 252~d2c
end

umlaut-u in 437/850 codepage has codepoint 129 (81 hex):
Active code page: 437
Codepage 437: hex 81: ü decimal: 129: ü
Active code page: 850
Codepage 850: hex 81: ü decimal: 129: ü
Active code page: 1252
Codepage 1252: hex 81:  decimal: 129: 

umlaut-u in 1252 codepage has codepoint 252 (FC hex):
Active code page: 437
Codepage 437: hex FC: ⁿ decimal: 252: ⁿ
Active code page: 850
Codepage 850: hex FC: ³ decimal: 252: ³
Active code page: 1252
Codepage 1252: hex FC: ü decimal: 252: ü

Output (Windows):

8-Bit Codepages: Encoding Problems, 2



6 Prof. Rony G. Flatscher

Microsoft Word and Cp1252  

● In the Western world MS Word seems to encode in codepage 1252
● All text to be read from and written to MS Word: codepage 1252 !
● If input text got encoded for a different codepage, one must convert

the text from that codepage to 1252
● Use the public routine bsf.iconv(text,fromCodepage,toCodepage) 

from BSF.CLS to reliably convert from one codepage to another
– E.g. if text was encoded in codepage 850 then invoke it as

text1252=bsf.iconv(text, "cp850", "cp1252") 
– If converting from/to UTF-8 (unicode) use "utf-8" as codepage argument



7 Prof. Rony G. Flatscher

Example: Microsoft Word and bsf.iconv()
word = .OLEObject~New("word.Application")
word~Visible = .true                   -- make word visible
document = word~documents~add          -- add new document
textEncoding=document~textEncoding
say "word's text encoding:" textEncoding
Selection = word~selection
text1 = "The German umlauts: ÄäÖöÜü and the sharp-s: ß."  -- cp1252
selection~~typeText("a) text1 (cp1252):" text1)~~typeParagraph

text2 = "The German umlauts: Ž„™”š� and the sharp-s: á."  -- cp850
selection~~typeText("b) text2 (cp850):"  text2)~~typeParagraph

text3=bsf.iconv(text2,"cp850","cp1252")   -- convert text from 850 to 1252
selection~~typeText("c) text3 (cp1252, converted from cp850):"  text3)~~typeParagraph
word~quit

::requires "BSF.CLS"    -- get ooRexx-Java bridge



8 Prof. Rony G. Flatscher

BSF.Clipboard Class from BSF.CLS 

● Makes it easy to copy images and strings to the system clipboard
● Makes it easy to paste images and strings from the system clipboard
● Option to explicitly state the codepage to use for strings

– setString(string [, encodedInCodepage]) 
● Allows to indicate the codepage that was used for the string
● The clipboard will get the string in Unicode 

– getString([encodeWithCodepage]) 
● Allows to indicate the codepage that should be used to encode the returned string

● Other useful methods of the BSF.Clipboard class:
– isEmpty (returns .true or .false), clear (empties the system clipboard),

getDataFlavours (returns an array of Java DataFlavor objects indicating the types),
setImage(image) and getImage (returns a java.awt.Image)



9 Prof. Rony G. Flatscher

Example: Microsoft Word and Bsf.Clipboard
word = .OLEObject~New("word.Application")
word~Visible = .true                   -- make word visible
document = word~documents~add          -- add new document
textEncoding=document~textEncoding
say "word's text encoding:" textEncoding
Selection = word~selection
text1 = "The German umlauts: ÄäÖöÜü and the sharp-s: ß."  -- cp1252
.bsf.clipBoard~setString("a) text1 (cp1252):" text1, "CP1252")
selection~~paste~~typeParagraph

text2 = "The German umlauts: Ž„™”š� and the sharp-s: á."  -- cp850
.bsf.clipBoard~setString("b) text2 (cp850):" text2, "cp850")
selection~~paste~~typeParagraph
       -- UTF-8 encoded emoticons: | smiley:   | frownie:
text3= "Unicode UTF-8 characters:" "e2 98 ba"x "e2 98 b9"x  -- UTF-8
.bsf.clipBoard~setString("c) text3 (UTF-8):" text3, "UTF-8")
selection~~paste~~typeParagraph
word~quit

::requires "BSF.CLS"    -- get ooRexx-Java bridge



10 Prof. Rony G. Flatscher

The WindowsClipboard Class

● ooRexx for Windows comes with a set of Windows specifc classes
– Please study the documentation in the book winextensions.pdf  

● ooRexx 5.1.0beta (of release quality) enhances the WindowsClipboard 
class to better support character set translations in its copy and paste 
methods
– Using as the codepage UNICODE expects UTF-16 encodings and will copy or paste

the text as is
– To be able to use the WindowsClipboard class one needs to defne a requires

directive like
::requires winSystm.cls  

– Download link for ooRexx 5.1.0beta (as of 2024-03-03)
https://sourceforge.net/projects/oorexx/fles/oorexx-docs/5.1.0beta/ 



11 Prof. Rony G. Flatscher

Further Information …

● Overview and description of the many existing 8-bit codepages
– Cf. https://en.wikipedia.org/wiki/Code_page 

● Unicode 
– Multibyte encodings (between one and four bytes per character!)

● UTF-7, UTF-8, UTF-16, UTF-16LE, UTF-16BE, UTF-32, UTF-32LE, UTF-32BE
– Can represent all characters of any living and dead language in the world!
– Homepage of the Unicode organisation developing the standard

● https://home.unicode.org/ 
● Another overview: https://en.wikipedia.org/wiki/Unicode 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

