
RxPipe   1 

RXPIPE for z/OS 
A free alternative to IBMs PIPE command  

 

Contents 
Introduction ....................................................................................................................................................... 2 

General information .......................................................................................................................................... 3 

Starting RXPIPE .................................................................................................................................................. 4 

Simple program – format a TSO LISTCAT ........................................................................................................... 5 

Read from a dataset .......................................................................................................................................... 6 

Write to a dataset .............................................................................................................................................. 7 

Using the user’s stack ........................................................................................................................................ 8 

The FILTER and BUILD commands ..................................................................................................................... 9 

Format output – list ......................................................................................................................................... 10 

Format output – tables .................................................................................................................................... 11 

Beyond the stack – save and load .................................................................................................................... 12 

Beyond the stack – fanout and fanin. .............................................................................................................. 13 

Looping over the stack – FOREACH ................................................................................................................. 14 

Using an external function............................................................................................................................... 15 

Some internals ................................................................................................................................................. 16 

Other bits and pieces ....................................................................................................................................... 17 

 

 

 

  



RxPipe   2 

Introduction 
Who am I 

My name is Willy Jensen, I have been working with large IBM systems since March 1973, in various 

capacities, starting as a humble systems operator and ending in December 2015 as system engineer at the 

Swiss bank UBS (at the time the 7th largest bank worldwide). All that time I worked with the base operating 

system and utilities, starting with VS1 and all the way up to z/OS. After my retirement I have been lucky to 

have access to a z/OS, so I continue working on my tools, and get a peek at the system internals. 

I can be reached through my email willy@harders-jensen.com, my public domain programs are at 

https://harders-jensen.com 

RXPIPE background 

Ever since the first time I encountered the pipe feature in Ms DOS, and later in Linux, I have been envious 

that we did not have something similar in MVS, as it was then. The simplicity of a number of small programs 

strung together to form a whole, rather than a big program trying to anticipate all a user’s needs. Then a 

couple of years ago I was part of a VM-to-z/OS conversion, which involved a lot of converting CMS REXX 

programs with heavy use of the CMS PIPE command. While not as simple as the Linux piping, the major 

difference, I felt, was that you had to add the word ‘PIPE’ in front, which I can live with. The PIPE command 

is included in CMS, you can get the PIPE command for z/OS, but it is part of the Batch Pipes product and is 

thus costly, and not something you can rely on being available anywhere. I thought about this for quite 

some time, a couple of years really, till I decided to give it a go. And eventually I wrote RXPIPE. 

  

mailto:willy@harders-jensen.com
https://harders-jensen.com/


RxPipe   3 

General information 
 
RXPIPE is not a replacement for the IBM PIPE command, rather it is an attempt to implement what I find the 
most useful elements of the PIPE command, in a small and free TSO/REXX based package. 
 
The base product uses only standard TSO and ISPF features, though some add-ons are recommended. 
 
RXPIPE executes a series of commands, called stages, passing the output of each stage as input to the next, 
via the TSO stack. In this it works similar to a MSDOS or Linux pipe. RXPIPE has a number of  
built-in transformers to manipulate the contents of the stack but will also accept external programs as 
stages. The stages are separated by the vertical bar (|). This might a problem in some cases, i.e. when using 
a REXX expression with boolean OR, but in such cases, you can put a backslash (\) character before the 
vertical bar. The backslash is dropped, and the vertical bar is passed on as part of the command. 
 
Any command and program can be part of a stage, as input and output can be the stack (preferred) or a 
dataset, which could have been generated by a previous stage. Parameters for a program can be generated 
by a previous stage. Some stuff, like WTOs and TPUTS cannot be trapped, but that is a TSO restriction and 
not something that RXPIPE can do anything about.  
 
The callers stack may be used as input and the final stack may be written back to the callers’ stack. The 
internal stack is listed and dropped by default at the end of RXPIPE processing.  
 
RXPIPE has currently 70+ built-in commands, of which 8 are separate members, mostly due to their size.   
 
Some of the command names can be abbreviated, sub-commands typically cannot. Command names are 
not case sensitive. 
 
Command operands and expressions are case sensitive unless otherwise stated for the command.  
Some of the commands are similar to the IBM PIPE commands, though may have a different name. The 
syntax is simple, with no parentheses or equal signs. Parameters must be quoted if they would otherwise 
cause ambiguity (i.e. WHERE is a parameter for some commands). 
 
RXPIPE executes with TSO PROFILE NOPREFIX, so datasets must be fully qualified - quotes are optional. 
 
RXPIPE in general do not care about return codes, only with failed commands. You will have to use the IF or 
SET commands to deal with exceptional return codes. 
 
Variables are accepted in commands. A variable is a name starting with an ampersand (&) and terminating 
in something which is not a character or a number. Lone ampersands are ignored as they could be the AND 
operand in an expression. You can use variables defined by the the SET command or the built-in variables. 
 
RXPIPE is built with focus on functionality, not so much on performance. It is expected, as time goes by, that 
commands will be reviewed and optimized.    
 
 
  



RxPipe   4 

Starting RXPIPE 
 

 

 

RXPIPE is a REXX program, which means that you can start is as any other REXX pgm. The recommendation 

is that it is installed as part of the start-up concatenation, but there is a  script included in the package to do 

TSO ALTLIB and ISPF LIBDEFs for the RXPIPE pgmlib. Due to the RXPIPE naming standard there shouldn’t be 

any naming conflicts with other programs or applications. 

 

General syntax 

The general syntax is  

   RXPIPE | command1 | .. .| commandn 

Each command consists of the command verb and optional parameters. The syntax is relaxed, there are no 

parentheses nor equal signs, verbs and parameters are mostly case ignorant and text must only be In 

quotes if there otherwise would be a clash between the text and parameters. 

The downside of this is that the syntax checking might not catch bad parameters. 

  

by Harders -Jensen ITRxPipe for z/OS Page 4

              

RXPIPE can be started in a number of ways, depending on whether is is started from a REXX pgm, or from
the TSO command line.

If started from a REXX you can do
cc RXPIPE(command)
Call RXPIPE  command 
Address TSO  RXPIPEcommand 

If started from a CLIST you can only do RXPIPE command

From from the TSO command line: RXPIPE command

From from the ISPF TSO command line: RXPIPE command

From from the ISPF command line: TSO RXPIPEcommand



RxPipe   5 

Simple program – format a TSO LISTCAT 
 

by Harders-Jensen ITRxPipe for z/OS Page 5

LISTCAT EXClude SPLIT STRIP

NONVSAM ------- DVL.PP.RXPIPE.V007.LIB                       

IN-CAT --- CATALOG.SYSA                                 

HISTORY                                                 

DATASET-OWNER-----(NULL)     CREATION--------2024.010 

RELEASE----------------2     EXPIRATION------0000.000 

ACCOUNT-INFO-----------------------------------(NULL) 

DSNTYPE----------LIBRARY                              

SMSDATA                                                 

STORAGECLASS ------USER1     MANAGEMENTCLASS--DEFAULT 

DATACLASS --------(NULL)     LBACKUP ---0000.000.0000 

VOLUMES                                                 

VOLSER------------SYSAU1     DEVTYPE------X'3010200F' 

NONVSAM ------- DVL.PP.RXPIPE.V007.LIB 

IN-CAT --- CATALOG.SYSA                

HISTORY                                

DATASET-OWNER-----(NULL)               

CREATION--------2024.010               

RELEASE----------------2               

EXPIRATION------0000.000               

DSNTYPE----------LIBRARY               

SMSDATA                                

STORAGECLASS ------USER1               

MANAGEMENTCLASS--DEFAULT               

DATACLASS --------(NULL)               

LBACKUP ---0000.000.0000               

VOLUMES                                

VOLSER------------SYSAU1               

DEVTYPE------X'3010200F' 

Program

RxPipe listc ent('DVL.PP.RXPIPE.V007.LIB') vol

| exc ACCOUNT-INFO 

| split ‘  ‘ 

| strip b

Format listcat – simple demo

Notes
• LISTC is an external command.
• Text for the EXClude command must match data case
• The stack is listed automatically at end

 
 
This simple demo shows how you can run a TSO command and format the output from that. 
 
The LISTCAT command is the standard TSO command. 
The EXClude command removes all lines containing the text ‘ACCOUNT-INFO’. 
The SPLIT command splits the lines at 2 blanks. 
The STRIP B command strips leading and trailing blanks (B Both). 
The remaining lines are automatically listed when RXPIPE ends. 

  



RxPipe   6 

Read from a dataset 
 

by Harders-Jensen ITRxPipe for z/OS Page 5

READ INCLUDE REPLACE

/*                                        */                                  

APF FORMAT(DYNAMIC)                                                            

APF ADD DSNAME(RDH.LINKLIB)                   VOLUME(DATA02)                   

APF ADD DSNAME(SYS1.LINKLIB)                  VOLUME(Z27RES)                   

APF ADD DSNAME(SYS1.LINKLIB)                  VOLUME(Z25RES)                   

APF ADD DSNAME(IBMUSER.DBGR.AUTHLIB)          VOLUME(CARTG2)                   

- - - - - - - - - - - - - - - - - -

/*                                        */                                  

LNKLST DEFINE NAME(LNKLST00)                                                   

LNKLST ADD NAME(LNKLST00) DSN(SYS1.LINKLIB)                                    

LNKLST ADD NAME(LNKLST00) DSN(SYS1.JESEXITS.LINKLIB)                           

LNKLST ADD NAME(LNKLST00) DSN(SYS1.COMMON.LINKLIB)                             

LNKLST ADD NAME(LNKLST00) DSN(SYS1.MIGLIB)                                     

- - - - - - - - - - - - - - - - - -

LNKLST ACTIVATE NAME(LNKLST00) 

APF DSNAME(SYS1.LINKLIB)                  VOLUME(Z27RES)

APF DSNAME(SYS1.JESEXITS.LINKLIB)         VOLUME(Z27RES)

APF DSNAME(SYS1.MIGLIB)                   VOLUME(Z27RES)

APF DSNAME(SYS1.CSSLIB)                   VOLUME(Z27RES)

APF DSNAME(SYS1.SHASMIG)                  VOLUME(Z27RES)

APF DSNAME(SYS1.CMDLIB)                   VOLUME(Z27RES)

. . .

Program

RxPipe < SYS1.PARMLIB(PROG00)   

| inc caps 'apf add'  

| inc caps (z27res)

| repl 'APF ADD' 'APF'        

Read from dataset

Notes
• < is an alias for READ.
• The ‘caps’ keyword must appear before the text.

INCLUDE

 

 

Reading is made simple, no need to allocate the dataset beforehand, or free it afterwards. You can also read 

a previously allocated dataset by DDname and a member from a partitioned dataset previously allocated by 

its DDname plus membername. And unix pathes too. 

Essentially everything that BPXWDYN can allocate and EXECIO can read is supported.  

The parameters are those that you would use for the BPXWDYN command, as that is what is used under the 
covers. 
 
The first INCLUDE select all records from the APF section, the second INCLUDE selects specific volser. Note 
the use of the ‘caps’ operand. 
 
Finally, all occurrences of ‘APF ADD’ are replaced by ‘APF’ to produce a nicer report. 
 
You can read from a VSAM KSDS or ESDS using the VSAM command. Only standard features (those allowed 

by the TSO REPRO command) are used, so it is not particular efficient, but it works. For more advanced 

VSAM access you should look at my RXVSAMBA program in CBT file 668, or at my website. 

 

  



RxPipe   7 

Write to a dataset 
 

by Harders-Jensen ITRxPipe for z/OS Page 6

Program 1 – specific dataset options

RxPipe

| tsons del &$user..users.list

| lu *                                   

| inc USER=                              

| write &$user..users.list new           

recfm(v,b) lrecl(255) blksize(0) 

space(1,1) tracks

Write to dataset

Notes
• TSONS executes the command, but does stack

the response.
• The write command uses the &$USER variable 

for userid.
• UNIT(SYSDA) is defaulted.

Program 2 – automatic dataset options

RxPipe

| lu *                                   

| inc USER=                              

| write &$user..users.list cond

Notes
• The COND operand means allocate with 

disp=SHR for an existing datasets, otherwise 
create a new dataset. 

• The stack data is analyzed to get the record
length and space rquiorements.

 

 

Writing is made simple, you don’t necessarily need to allocate or create the dataset beforehand, or free it 

afterwards.  

Everything that BPXWDYN can allocate and EXECIO can write is supported.  

The parameters are those that you would use for the BPXWDYN command, as that is what is used under the 
covers. 
 
You can append to a dataset using the WRITE .. APPEND command (>>), this also works for pds members. 
The DELETE command could have been used directly, but that would have written the response to the stack, 
which does not matter here because of the following INCLUDE command, just something to keep in mind. 
 
You can specify the allocation options for a new dataset, or let RXPIPE determine them for you. The default 
recfm and lrecl for an automatic dataset is VB 27994, the space will be determined by the stack contents. 
The COND parameter tells RXPIPE to allocate the dataset if it does not exist, or use the existing one. 
 
Member statistics are added if ISPF is active. 
 
You can write to a VSAM KSDS or ESDS using the VSAM command instead of the WRITE command. Only 

standard features are used, so it is not particular efficient, but it works. For more advanced VSAM access 

you should look at my RXVSAMBA program in CBT file 668, or at my website. 

 

  



RxPipe   8 

Using the user’s stack 
 

by Harders-Jensen ITRxPipe for z/OS Page 7

The stack as input and output

Program

say '->Stack as input '                                   

queue 'This is a stack record'                            

Rxpipe "| say Listing internal stack"                    

Call ListStack

say ''                                                    

say '->Stack as output '                                  

Rxpipe "text Howdy folks | "                             

Call ListStack

say ‘’ 

say '->Stack as input and output '                        

queue 'Kilroy was here'                                   

Rxpipe "| split 'was' | "                                

Call ListStack

exit 0                                                    

ListStack:                                                 

if queued()=0 then do; say 'Stack is empty' 

return 0; end 

say 'Stack#:' queued() '...'                              

do queued();parse pull r;say r;end; return 0 

->Stack as input           

Listing internal stack     

This is a stack record     

Stack is empty RETURN 0    

Stack#: 0 ... 

->Stack as output          

Stack#: 1 ...              

Howdy folks

->Stack as input and output

Stack#: 2 ...              

Kilroy                     

was here 

 

You can feed your external stack to RXPIPE and retrieve the RXPIPE internal stack back to the calling 

program. If the RXPIPE command starts with the vertical bar then your stack is read. Likewise If the RXPIPE 

command ends with the vertical bar then the RXPIPE stack is written. This demo shows you how. 

The ‘text’ command puts a line on the stack. 

The sub-function ‘ListStack’ shows the contents of the users’ stack. 

The code in last section reads the user’s stack, does some manipulation (split the record), and writes it back. 

 
  



RxPipe   9 

The FILTER and BUILD commands 
 

by Harders-Jensen ITRxPipe for z/OS Page 8

Program to show NONVSAM datasetname and volser

RxPipe

| listc lvl(sysa) nonvsam vol

| filter pos('NONVSAM -',r)>0 \| pos('VOLSER-',r)>0

| split   'DEVTYPE-'                               

| exc '-----X'                                 

| combine 'VOLSER-'                                

| replace '-' ' '                                  

| build left(w2,44) w4                             

The FILTER and BUILD commands

Notes
• The BUILD command is used with the internal

parsed variables ‘w2’ and ‘w4’ to finally
format the output.

When a simple INCLUDE is not enough…. NONVSAM ------- SYSA.AXR.EXEC                                

IN-CAT --- SYS1.MCAT.VZ27RES                            

HISTORY                                                 

DATASET-OWNER-----(NULL)     CREATION--------2020.250 

RELEASE----------------2     EXPIRATION------0000.000 

VOLUMES                                                 

VOLSER------------SYSAS1     DEVTYPE------X'3010200F' 

NONVSAM ------- SYSA.CBT.ISPMLIB                             

IN-CAT --- SYS1.MCAT.VZ27RES                            

HISTORY                                                 

DATASET-OWNER-----(NULL)     CREATION--------2020.250 

RELEASE----------------2     EXPIRATION------0000.000 

VOLUMES                                                 

VOLSER------------SYSAS1     DEVTYPE------X'3010200F' 

NONVSAM ------- SYSA.CBT.ISPPLIB  

. . .

SYSA.AXR.EXEC                                SYSAS1

SYSA.CBT.ISPMLIB                             SYSAS1

SYSA.CBT.ISPPLIB                             SYSAS1

SYSA.CBT.LINKLIB                             SYSAS1

SYSA.CBT.OBJ                                 SYSAS1

SYSA.CBTLINK                                 SYSAS1

SYSA.CLIST                                   SYSAS1

SYSA.DOCLIB                                  SYSAS1

SYSA.DOCLIB.BK                               SYSAS1

SYSA.EXEC                                    SYSAS1

SYSA.EXEC.OLD                                SYSAS1. . .

 
 
We looked briefly at the INClude command. It passes the stack record if the text in the command matches, 
aka the POS function, though it is slightly more capable. 
 
The FILTER command, however, is transformed into a REXX IF statement, so can be as simple or as complex 
as it needs to be. It also means that the syntax must adhere to REXX rules and restrictions. As previously 
mentioned, the vertical bar (Boolean OR) must be preceded with a backslash. When the filter expression is 
true then the stack record is kept, otherwise it is dropped. 
 
The BUILD command is transformed into a REXX assignment statement, so have the same caveats as the 
FILTER command. 
 
The demo shows how some of the internal variables can be used. When a record is pulled from the stack, it 
is parsed to individual words assigned to variables ‘w1’ to ‘w20’, plus ‘r’ containing the entire record. 
 
Note the EXClude command, it works opposite to the INClude command. 
 
The demo introduces the COMBINE and REPLACE commands. 
  



RxPipe   10 

Format output – list 
 

 
 

Listcat is rather complicated to format nicely, but it can be done. The challenge is how dashes ‘-‘ are used. 

The demo shows the normal output from a LISTCAT, the intermediate listing and the final tabular list. The 

intermediate listing shows how the data must be formatted as discrete words, with the number matching 

the ‘cols’ statement of the TABLE command. The BUILD command is used to ensure that there are 2 words 

in each record, also in header records. The special character ‘#’ could be removed later by a final REPLACE. 

Note that the dataset is unquoted and fully qualified. 

The final ‘list’ command is not really necessary. 

  



RxPipe   11 

Format output – tables 

 
 

The TABLE command formats the columns according to the words or records that will be used to fill it, 

though you can specify column or page width yourself, as well as border options. 

You can control the characters that are used to create the borders, both inner and outer, as well as prevent 

top- and bottom borders. The latter is useful if you want to concatenate tables. 

The ‘text’ command adds the test data to the stack. 

 

 

  



RxPipe   12 

Beyond the stack – save and load 
 

by Harders-Jensen ITRxPipe for z/OS Page 9

Program which does 2 reports after just one read

RxPipe

< SYS1.PARMLIB(PROG00)                          

| save                                           

| filter word(r,1)='APF' & pos('(DATA02)',r)>0   

| list 'APF where vol is DATA02 '                

| load clear                                     

| filter word(r,1)='LNKLST' & pos('DSN(ADCD',r)>0

| list 'LNK where dsn is ADCD*' 

SAVE and LOAD

Notes
• You must quote the tetxt in the LIST command if part of the text contains the keyword ‘where’.
• The plus sign (+) in the TEXT command creates a blank line.
• You can use a numeric id for the SAVE and LOAD commands, so you can have multiple temp stores. Default is 1.
• LOAD will by default add to the stack, hence the CLEAR option.

APF where vol is DATA02                                     

APF ADD DSNAME(RDH.LINKLIB)                   VOLUME(DATA02)

APF ADD DSNAME(JOER.TEST.AUTHLIB)             VOLUME(DATA02)

APF ADD DSNAME(SBGOLOBC.LOAD)                 VOLUME(DATA02)

LNK where dsn is ADCD*                                      

LNKLST ADD NAME(LNKLST00) DSN(ADCD.Z27.LINKLIB)             

LNKLST ADD NAME(LNKLST00) DSN(ADCD.Z27.VTAMLIB) 

SAVE and LOAD is useful i.e if you wish to avoid multipe READS

 

 

Just one stack may not always be sufficient. While you can have only one stack active, and cannot switch 

between stacks, the stack can be saved and loaded. 

SAVE  

• Stores a copy of the stack in a stem. You can provide an id if you want to save multiple times. The 

default id is ‘1’. 

• The stack is retained unless you use the CLEAR keyword. 

• You can add to a saved stream by the APPEND keyword. 

• You can filter what is being saved by using the WHERE clause. 

LOAD 

• You can specify which stream id to load. 

• You can load multiple streams either sequentially or rotated. 

• You can clear the stack before load by using the CLEAR keyword. 

• You can filter what is being loaded by using the WHERE clause. 

 

  



RxPipe   13 

Beyond the stack – fanout and fanin. 
 

by Harders-Jensen ITRxPipe for z/OS Page 10

Programs which does the same 2 reports as the SAVE + LOAD demo

FANOUT and FANIN

Notes
• The FANOUTs also reformats the saved records.
• The FANOUT for :3 is not really neccessary.

APF DSNAME(RDH.LINKLIB) VOLUME(DATA02)      

APF DSNAME(JOER.TEST.AUTHLIB) VOLUME(DATA02)

APF DSNAME(SBGOLOBC.LOAD) VOLUME(DATA02)    

LNKLST NAME(LNKLST00) DSN(ADCD.Z27.LINKLIB) 

LNKLST NAME(LNKLST00) DSN(ADCD.Z27.VTAMLIB) 

FANOUT + LOAD + implicit LIST

RxPipe < SYS1.PARMLIB(PROG00)                                       

| fanout

:1 w1 w3 w4 where word(r,1)='APF' & pos('(DATA02)',r)>0   

:2 w1 w3 w4 where word(r,1)='LNKLST’ & pos('DSN(ADCD',r)>0

:3 where \?catch

| load 1 clear 

| load 2  

FANOUT + FANIN + implicit LIST

RxPipe < SYS1.PARMLIB(PROG00)                               

| fanout

:1 where word(r,1)='APF' & pos('(DATA02)',r)>0    

:2 where word(r,1)='LNKLST' & pos('DSN(ADCD',r)>0 

| fanin

:1 w1 w3 w4                                        

:2 w1 w3 w4                                  

Notes
• FANIN will clear the stack.
• The reformats are done by the FANIN.

 

 

The 2 programs do the same, just using different methods. 

FANOUT  

Save stack to multiple internal streams by filter.                          

Any number of streams can be defined, each definition must be preceded by a colon. The stack records are 

parsed to variables R (entire record) and W1-W10 (words 1 to 10) before the test is done. If all tests fail, 

then the record is ignored. Records may be written to multiple streams.  

The value ‘?CATCH’ is set if a record is written to a stream, so you can use the expression WHERE \?CATCH 

to write records not caught by previous filters.    

FANIN  

Load internal streams to the stack, applying filters and formats. Similar to the LOAD command, except stack 

is cleared, filter and format can be applied individually to each stream and streams are loaded sequentially. 

Any number of streams can be defined, each definition must be preceded by a colon. The stream records 

are passed to variables R (entire record) and W1-W10 (words 1 to 10) before the test is done. If all tests fail, 

then the record is ignored. Default is no filter. 

                               

  



RxPipe   14 

Looping over the stack – FOREACH 
 

    
 

You can use each stack record to drive a RXPIPE command. 

The demo lists SYS1.PARMLIB members starting with IGD, putting a header line in front of each. 

Note that the stack is not preserved between command invocations, so avoid commands that modify 

existing stack entries. 

The sub-command delimiter (:) can be changed by the DLM parameter, which must be first.   

The records are parsed when they are pulled from the stack, so you can use the variables &R and &W1 - 

&W20 in the commands, plus internal variables and variables generated by the called commands. 

The ‘strip’ command makes the record eligible for the include by mask. You could use the command ‘mbrlist 

sys1.parmlib(igd*)’ instead of listds + drop + strip, mbrlist is a separate command member, though still part 

of the package.  

 

  

by Harders -Jensen ITRxPipe for z/OS Page 14

 ro ra  to list      r  o t  ts

                      

Notes
 The FOREACH executes 2 commands  TEXT and READ
 Default delimiter is a colon.

List      r   DS S K

S S

  DS(S S1 S S   DS1)

    DS(S S1 S S     DS1)

List      r   DS S  

S S   DS(S S   DS1   DS)

    DS(S S     DS1     DS)

 NT    L(1 )

D NT    L(1  )

        (N )

     

 ro ra 

   ip 

list s sys1 par li      rs

|  rop  

| strip  

| i    D 

|  or a  

t  t List      r & 1

 r a sys1 par li (& 1)

Listds FOREACH

TEXT

READ

  DS S K

  DS S  

  DS S 1

  DS S  



RxPipe   15 

Using an external function 
 

 

The sample tests the return value from the program. 

The RXVASMBA function can write data to the stack, which is then displayed automatically by RXPIPE at the 

end. 

 

REXXGBLV can save a REXX stem or stack, and later reload as stem or stack. 

by Harders -Jensen ITRxPipe for z/OS Page 15

 ro ra  si   all

   ip 

r    all    sa  a '  t  a(    S   T ST)

  y(    T1  ) sta  '

| i  r s lt= t   

| say   rsio  &       S, r a s &       D

|  ls 

| say  rror,  s &        

                         

Notes
 The commandmust be a REXX function, thus

use  call  or cc .
  result may or may not contain proper value.
 The SAY command shows some statisticsand

potential error message.
 The samples also show the IF .. ELSE construct.

The sample uses the external REXX function RXVSAMBA, which
can read from and write to a VSAM cluster directly.

  rsio     S                    1      1, r a s         ,  s 

    T1    NTL      S S            

    T1    NTL       LD S S            

    T1   L   S S            

    T1   L        S S            

    T1   L  D S S  1           

    T1   L  D      S S  1           

   

 ro ra  si  r t r  al  (r  o       )

   ip 

r     =   sa  a('  t  a(    S   T ST)

  y(    T1  ) sta  ')

| i   = t   

| say   rsio  &       S, r a s &       D

|  ls 

| say  rror,  s &          ,

by Harders -Jensen ITRxPipe for z/OS Page 16

1   t a st    ro  t   all r to t  sta  

pars  al  'Kilroy  as   r  ',

 it   ata 1  ata    ata    ata      a  st     

  =      l ('sa    ar( ata )')

 r pip  ,

 r    =      l ('loa   ar( ata ) tosta  ') ,

 | list Sta      

                            

Sadly REXX itself do not supply any means of accessing
a stem across REXX pgm boundaries, so I wrote the
REXXGBLV program a while back to address that
deficiency.

Note that RXPIPE can generate a stem at exit, i.e.

  t rpr t r pip (   rl sys1 par li ( r  )

|   it st    ata  )

Not nice, but it works.

The samples use the external REXX function REXXGBLV to pass a stem between RXPIPE and the caller.

Sta     

Kilroy

 as

  r 

    t t  sta  to a o t r st  

 r pip  ,

   rl sys1 par li (  D ) ,

 | r    =      l ('sa  sta  as( ata )     ') ,

 |  l ar 

  =      l ('loa   ar( ata )')

  =      l ('rlist  ar( ata )')

D T            

D T  1   DS S K

D T      DS S  

D T      DS S 1

D T      DS S  

  o r  or s list            



RxPipe   16 

Some internals 
 

 

 

The RXPIPE parameter is converted to a REXX interpret-able program, as that allows for much simpler IF-

ELSE conditional handling. 

Commands are internally named with a leading zero, to avoid conflict with external commands or programs. 

RXPIPE does an initial scan of itself to identify those internal commands. 

There is an active ON SYNTAX. Neither ON ERROR nor ON NOVALUE are implemented as they have shown to 

be disruptive here. I highly recommend ON NOVALUE in general.  

Most hi-use functionality is internal to RXPIPE, this includes parameter parsing and mask handling. 

Sorting is done using an external member, which uses the ‘quick’ sort technique. Other sorts like USS and 

DF/SORT are supplied and can be used instead. 

A number of the internal commands are processed using the REXX INTERPRET command. They are 
somewhat optimized in that entire blocks are INTERPRETed, not single lines, i.e. 
  Interpret “Do queued(); parse pull r; -do something-; end”  

 

 
  

by Harders -Jensen ITRxPipe for z/OS Page 16

             

 o   
 00EXEC determine type of commandand executes accordingly. It also terminates processing if error condition is

encountered, or return code is greater than limit.
 Commands starts with azero, they may be procedures.

       o  a  ND  

 ND     ro    r   pos  sta    (  lo al )    Drop   pli at li  s   

   = 

 o  sta    

pars p ll r

i    r t   it rat 

   r=1

     r

   

r t r   

 s  o   rt  to

  t rpr t ,

 all         list   t('D L                L  ')  ol  

 all                 NT  N    

 all         list    or split  

 all         split ' '  

 all         strip   

T   irst pro ra 

   ip list   t('D L                L  ')  ol

|         NT  N  

| split    

| strip  

  tir   lo  s ar  NT     T  ,  ot si  l  li  s, i   

Interpret  Do queued(); parse pull r; -do something-; end 



RxPipe   17 

Other bits and pieces 
 
Built-in variables  
 
 DATE Todays date in expanded European format yyyy-mm-dd  
 HALTONRC If set, then halt if  rc is ge the value. Set the value using the SET command, i.e. SET 

 HALTONRC   8. Default is ‘not set’. 
 JOBNAME The jobname/TSOid RXPIPE is running in  
 LASTDD Latest DD name generated by allocation  
 LASTDS Latest Dataset name generated by allocation  
 MSGLVL Show commands and their result if  MSGLVL is set gt 0.     
 RC Latest numeric return value  
 RESULT Latest return value, if any  
 TIME Time in 24-hour format with seconds hh:mm:ss  
 USER Userid 
 USERPFX The TSO PROFILE PREFIX value  
JOBNAME Same as  JOBNAME  
MCATNAME Mastercatalog  
MCATVOL Mastercatalog volume  
ME Same as  USER  
R The current stack record for some commands  
USER Same as  USER  
USERPFX Same as  USERPFX  
W1-W20 Word 1 to 20 of the record for some commands  
 
Some commands produce variables of their own. 
  



RxPipe   18 

 

RxPipe for z/OS Page 16  

 


