
René Jansen, 36th International Rexx Symposium, Vienna 2025

From Rexx to NetRexx
A quick impression

The JVM
Java Virtual Machine

• In 1995 Java was ported to IBM’s platforms, starting with OS/2, as part of
IBM’s emerging multi-platform strategy. AIX, Linux, Windows, OS/400 and z/
OS followed. NetRexx was part of the VM/ESA product for a while.

• The first (OS/2) port was done by MFC (Mike Cowlishaw), who was then
wondering what Rexx would look like if it ran on the JVM. First a translator
was produced, and when that worked well (1996), an interpreter was added
(2000)

• The NetRexx translator produces Java code which is compiled into .class files

• It runs, and can be built, everywhere where there is a Java Virtual Machine

It looks just like Rexx
but every program is a Class

• say ‘hello’

• it has the Rexx built-in functions

• in oo-notation, like variable.left(4)

• or in traditional notation, like left(variable,4)

• Case insensitive just like Classic Rexx and ooRexx

Equivalent, "complete boilerplate" version:

Objects
The Java way

• Inheritance (single- and interface-) and encapsulation

• Properties Indirect adds getter and setter methods for class level variables

• There is no labeled function, procedure or 'expose'

• Everything is in Classes and Methods

• Which are generated for you for the simple programs

ooRexx NetRexx

A JavaBean pattern

Program Fact.nrx

 === class Fact ===

 constructor Fact()

 signals ClassNotFoundException

 overrides Object()

 constructor Fact(Rexx,Rexx,Rexx)

 signals ClassNotFoundException

 method toString

 overrides Object.toString

 method toSQLInsert

 method toAssertion

 method toRetraction

 method setPred(Rexx)

 method setSubj(Rexx)

 method setObj(Rexx)

 method de_apo(Rexx)

 method write(PrintWriter)

 method writeDB(PreparedStatement)

 method persist(PrintWriter)

 method read(BufferedReader)

 signals IOException

 method readFix(BufferedReader)

 signals IOException

 method getPred

 method getSubj

 method getObj

Compilation of 'Fact.nrx' successful

Small Differences

• All character comparisons are case-insensitive

• This was planned for Classic Rexx but dropped because of the
performance of the computers of the era

• An uninitialized variable is not equal to its variable name like in Classic Rexx

• PARSE does not have VAR but goes straight to the variable

• Stem variables use [] instead of dot (.) notation

• An object is instantiated from a Class by calling its constructor()

Optional Arguments
on constructors

method charOblong(newwidth, newheight, newprintchar='X')

which indicates the third argument, if left out, will be X

if called this way:

first=charOblong(5,3) −− make an oblong

Seamless integration of JVM classes

• You can call any Java class without any ceremony

• For this purpose, the import statement works a lot like Java's (but has
shortcuts)

• Import works on packages which you can add yourself

• You need to be aware of the CLASSPATH environment variable which is used
to find classes

• Profits from all performance improvements of the JVM over the years

TreeMap is a Java collection class

... including GUI Framework classes

Unicode

• Rexx Strings in NetRexx are arrays of Java char. A Java char is a Unicode
character (UTF-16, but moving to UTF-8 over the years)

• so "René".length() = 4 and not 5

• Use of Unicode is very un-problematic

Numeric Digits
unlimited precision, the Rexx way

JNI - The Java Native Interface

• External, native (to the instruction set of the platform) functions can be called
through the JNI, the Java Native Interface

• Normal external functions would be written in NetRexx or Java and the JNI is
reserved for specialist work

ADDRESS

• ADDRESS works like in Classic Rexx with some of the extensions of the Rexx
Standard which it shares with ooRexx

• ADDRESS WITH can write from and to files and stem variables

JDBC - Java Database Connectivity

• Your program works on all database engines that have a JDBC driver (Db2,
Oracle, Postgres, SQLite, MySQL, etc, etc including even MS Excel.

• This portability is a great bonus; your app works one day on z/OS with DB2
and the next day on Linux with PostGreSQL - unchanged!

• But for smaller programs: you can also just address the database cli

Singleton Pattern

Connect to driver

Create and execute statement

JPMS: The Module System

• NetRexx works on the JPMS, and tolerates its use

• This enabled NetRexx to run on Java 9 and higher

• Applause to Marc Remes for pulling this of

Functional Programming

• Added later to the Java language

• NetRexx can make use of this

killer

k

>>Just<<

>>a<<

>>bunch<<

>>of<<

>>words<<

>>to<<

>>test<<

>>for<<

>>killer<<

>>items<<

>>containing<<

>>a<<

>>k<<

Interpret

• Version 5.01 adds INTERPRET in interpreted (ha!) and compiled versions

• The full force of meta-interpretation is available

Text Blocks

• Version 5.01 add multiline text blocks

• “””Starts a multiline block”””

• Very convenient for Interpreted blocks and multiline SQL queries

• This was present in embryonic REX but was dropped because of granularity
of error messages.

NetRexx Pipelines

• A very complete implementation of CMS Pipelines

• Multithreaded and multistream, top performance

• Like on CMS, callable from (Net)Rexx and your own Pipeline Stages can be
written in (Net)Rexx

Stream I/O

• The Rexx 4.0 ANSI I/O package that never made z/OS

• Added to NetRexx for larger compatibility with other Rexx'en

• Even more improvements in NetRexx 5.01

Complete documentation

• The NetRexx Language Definition, ISBN 978-94-648-5133-5

• The NetRexx Programming Guide

• The NetRexx Pipelines User Guide and Reference

