

RexxLA

NetRexx Language Reference

in a nutshell

by Marc Remes

remesm@gmail.com

The NRL
● Syntax and structure
● Types and classes
● Terms
● Methods
● Type conversions
● Expressions and operators
● Clauses and instructions
● Indexed strings and arrays
● Assignments and variables
● Keyword instructions
● Built-in methods

Structure and syntax
● clauses

– zero or more blanks (ignored), a sequence of tokens, zero or more blanks (ignored), and
the delimiter ';' (implied by line end)

● 'one = 1'

● 'if one = 1 then; say "one"

● comments, replaced by a blank

– block comment /* this is a comment */

– line comment -- this also

– Shebang #!/usr/bin/env nr

Structure and syntax
● implied semicolons and continuations

– ; (clause end) is implied at end of each line, unless
● line ends with multi-line block comment, continues after block comment
● hyphen as last token –, replaced by blank

● case sensitivity
– NetRexx is case-insensitive, unless 'option strictcase'

– 'LOOP forever' equals 'loop FOREVER', as lookup for names of variables, methods etc

– Lookup is case-insensitive and case-preserving, first exact-case, then case-insensitive,
error when duplicate matches

– External names (class, property, method) have defined spelling, first defined or used

Structure and syntax
● tokens

– literal string, a sequence of characters delimited by " or '
● escape sequences, the obvious ones (\n, \t, \r, \f, \", \', \\, \-, \0) and \xhh, \uhhhh
● "This is a 'literal' string\n"

– symbol
● a group of characters

– A-Z, a-z, 0-9, _$€
● a number

– 1, 1.00, 0.1E+9, 0x81(129), 2X81(-127), 0b1 (1), 1B1 (-1)
● operator character

– + - * % | & \= < >
● special character,

– . , ;) (] [

Types and classes
● NetRexx programs manipulate values

● Values have an associated type or class

● The type identifies
– the nature of the value

● properties
– and the operations that can be carried out on the value

● Methods

● Optionally qualified by package name ('package' instruction)

● NetRexx has its own default class in package netrexx.lang
– Rexx

● A sequence of characters with well-known rexx methods for arithmetic operations and string manipulation
● substr, overlay, pos, translate, abs, format changestr, etc

● Primitives types
– boolean char byte short int long float double
– while not defined as class (not a subclass of java.lang.Object), no syntax distinction

Types and classes
● Dimensioned types

– Types that have an associated dimension

– Represented by square brackets [], with zero or more comma's

– Dimension is number of comma's +1

● Rexx type is distinct from Rexx[] type

● int[10,10,10], a three-dimensional array

● Minor and dependent classes

– Qualified by the 'parent'

– Foo.Bar, to any depth, Foo.Bar.Pod

– Short name access to methods and properties

Terms
● A syntactic unit which describes some value
● Simple term

– A literal string
● 'hello world'

– A symbol
● one

– A method call, '(' must be followed immediately after method name
● add(one, '2')

– An indexed reference
● in[one, two]

– An array initialiser
● [1, 2]

– A sub-expression
● (one / '2')

Terms
● Compound term

– A simple term, or qualified class, or qualified constructor (the 'stub')

– Optionally followed by a continuation

● one or more symbols (non-numeric), method calls or indexed references

● separated by connector .

– 'hello world'.word(2).pos('o')

– java.lang.math.PI

– ('hello' 'world').wordpos('hello')

– in[1, two].length()

Methods
● Named routines belonging to a class

– Referenced in a term, possibly part of an expression

● x = whatIsX()

– A clause on its own

● a method on 'this', returned value discarded
– this.Is('X')

● or a constructor method
– X('wasTwitter')

● '(' must immediately follow the name of the method which must be non-numeric

● Variable number of arguments

● When no arguments '()' can be omitted

Methods
● Method resolution

– If in 'stub' of term
● Search current class
● Search super classes, which this current class 'extends'
● Search 'uses' class-list
● Search constructor

– Else, stub must evaluate to a value of a type (or just a type)
● Search type for method
● Search super classes of type

● Finding the method
– Same name
– Same number of arguments and argument types
– Return type must match
– If more than one candidate

● Conversion cost of arguments determines (lower is better)

Methods
● Method overriding

– Same name as other class

– The method in the other class is not 'private'

– The other class is a super class of this class ('extends') or this class 'implements' the other
class

– The number and type of arguments match exactly

– Must return same type (or a subclass of the type)

● Return types

– When method declaration 'returns' a type, the value of the type must be returned

– Otherwise, anything or nothing can be returned

Methods
● Constructor methods

– Used to create a value of given type

– Named identical to class name

– Returns an 'instance' of the class, a value of the type

● If not present, default constructor with no arguments is implicitly created

– Unless all 'static' or 'constant', or 'interface'

● Always parentheses ()

● Must call constructor in super class

– If not present call to super() is implicitly added

● Returns 'this'

Type conversions
● When a value involved in an operation has a different type than needed

● Automatic conversion when no loss of information

– Source and target are same type

– Target type is superclass of source type

– Source type has a dimension and target is Object

– Source type is null and target is not primitive

– Target and source types have well-known conversions
● Rexx to binary number, char[], String, or char
● String to binary number, char[], Rexx, or char
● char to binary number, char[], String, or Rexx
● char[] to binary number, Rexx, String, or char
● binary number to Rexx, String, char[], or char
● binary number to binary number (if no loss of information can take place)

Type conversions
● Explicit conversion (cast), possible loss of information

– Permitted for all automatic conversions
– Target type is a subclass of source type, or 'implements' it
– Both target and source type are primitives
– Target type is Rexx, or String

● Conversions have a cost
● Cost is calculated to select methods when several possibilities are there
● Automatic conversions have following cost

– Zero when source and target have same type, or source type is null and target is primitive
– Different costs for conversions between primitives

● 8-bit to 64-bit number cost is higher than 8-bit to 32-bit number
– Conversions which require creation of a new object have higher cost than those that don't
– Conversions that may raise an exception cost more than those that never fail

Expressions and operators
● An expression is 'a general mechanism for combining one or more data items in various ways to

produce a result, usually different from the original data'

● ..

● Consist of one or more terms and zero or more operators which denote operations to be carried
out on the terms

– Most operators act on two terms

– Also prefix operations

● Evaluated from left to right, modified by parentheses (), and by normal algebraic precedence

● The result of evaluating any expression is a value, which has a known type

Expressions and operators
● Operators are constructed from one or more operator characters

● Five groups

– Concatenation

– Arithmetic

– Comparative

– Logical

– Type operators

● First four work with strings or things converted to strings without information loss

Expressions and operators
● Concatenation operations

– Blank'two' 'strings'
– || 'two'|| ' strings'
– Abuttal 'two ''strings'

● Arithmetic operations
– + - * /
– % integer divide
– // Remainder
– ** Power
– Prefix -
– Prefix +
– Requires both terms to be numbers

Expressions and operators
● Comparative operators

– Normal

● = \= > <

● <> >< greater than or less than , \=

● >= \<

● <= \>

– Strict

● == \== >> <<

● >>= \<<

● <<= \>>

– Some operators require both terms to be numbers

Expressions and operators
● Boolean operators

– &
– |
– && Exclusive or
– Prefix \ Not
– In binary classes the operators act on all integers bits

● Type operator
– String "abc"
– Exception e
– If i<=Object then say 'i is an Object'
– If String => i then say 'i is a String'
– If String <= Object then say 'String is an Object

● <= or => tests whether value or type is a subclass of or same class, or vice versa

Expressions and operators
● Numbers

– Well-known Rexx syntax

● ’12’

● ’-17.9’

● ’0127.0650’

● ’73e+128’

● ’ + 7.9E-5 ’

● ’00E+000’

Indexed strings and arrays
● Indexed strings aka stems

– Must be a Rexx type, with value assigned before using sub-values

– [must follow immediately after term

– 'array' style syntax

surname = 'Unknown

surname['Fred']='Bloggs'

surname['Davy']='Jones'

try='Fred'

say surname[try] surname['Bert']

– Multi-level

x=''

x['foo', 'bar']='OK'

say x['foo', 'bar']

y=x['foo']

say y['bar']

– loop name over surname; say surname[name];end

– surname.exists('Bob')

– Assign null to drop sub-value

Indexed strings and arrays
● Arrays

– Fixed size
– [must follow immediately
– Zero- based
– Multi-dimensional
– Declaration

● a=int[], a one-dimensional array of integers
● m=Rexx[,,], a three-dimensional array of Rexx types

– Construction
● a=int[3], a one-dimensional array for 3 integers
● m=Rexx[3,3,3], a 3x3x3 array for Rexx types

– Initialisation
● a=[1, 2, 3] , an array of three integers, 1, 2 and 3
● m=[[1,2], [3,4]], a two-dimensional array for integers, with values 1, 2 and 3, 4

Clauses and instructions
● Null clauses

– Ignored

● Assignments
– term = expression

● Method call
– A method invocation()

● Keyword instruction
– one or more clauses, the first of which starts with a non-numeric symbol which is not the

name of a variable or property in the current class
● Interestingly, you can have if as a variable name,
● extend NetRexx by creating new keyword instructions
● and stay backwards compatible

Assignments and variables
● term = expression

● Variable (term) has a type, determined by first assignment, cannot change

● Variable scope
– Properties

● Belongs to class
– Method arguments

● Belongs to method
– Local variables

● Belongs to method

● Names must be unique within a class, and are case-insensitive
– Fred = FRED = fred

● Variables are handles, multiple variables can refer to same value

first='A string'

second=first

first = 'A changed string'

So is second
●

Keyword instructions
● Well-known Rexx instructions

– Execution control

● if, loop, iterate, leave, select, signal, do, return, exit

– Class definition

● class, properties, method

– Meta

● package, import, options, numeric, annotation

– Miscellaneous

● trace, say, parse, interpret, address, nop

Built-in methods
● Well-known Rexx built-in methods are available on the Rexx type (see netrexx/lang/Rexx.nrx)

– String manipulation

● changestr, insert, pos, lastpos, right, left, overlay, upper, translate..

– Number methods

● format, abs, d2x, x2d, x2b, max, min..

– Misc

● datatype, exists, date, time ..

● All available as method on the Rexx instance

– say 'Now is the time'.subword(1, 2)

● And per netrexx/lang/RexxRexx.nrx in 'classic' non-oo style

– say subword('Now is the time', 3, 2)

