RexxLA
NetRexx Language Reference

In a nutshell

by Marc Remes

remesm@gmail.com

Syntax and structure
Types and classes

Terms

Methods

Type conversions
Expressions and operators
Clauses and instructions
Indexed strings and arrays
Assignments and variables
Keyword instructions

Built-in methods

The NRL

Structure and syntax

 clauses

- zero or more blanks (ignored), a sequence of tokens, zero or more blanks (ignored), and
the delimiter ;' (implied by line end)

e 'One = 1'
« 'if one = 1 then; say "one"
 comments, replaced by a blank
- block comment /* this is a comment */

- line comment -- this also

- Shebang #1/usr/bin/env nr

Structure and syntax

* implied semicolons and continuations
— ; (clause end) is implied at end of each line, unless
* line ends with multi-line block comment, continues after block comment
* hyphen as last token —, replaced by blank
* case sensitivity
— NetRexx is case-insensitive, unless 'option strictcase'
— 'LOOP forever'equals 'loop FOREVER', as lookup for names of variables, methods etc

— Lookup is case-insensitive and case-preserving, first exact-case, then case-insensitive,
error when duplicate matches

— External names (class, property, method) have defined spelling, first defined or used

Structure and syntax

* tokens

— literal string, a sequence of characters delimited by " or '
* escape sequences, the obvious ones (\n, \t, \r, \f, \", \', \\, \-, \0) and \xhh, \uhhhh
* "This is a 'literal’ string\n"
— symbol
* agroup of characters
- A-Z,a-z,0-9, $€
* anumber
- 1, 1.00, 0.1E+9, 0x81(129), 2X81(-127), Ob1 (1), 1B1 (-1)
* operator character
- +-r% | &\=<>
* special character,

-) (00

Types and classes

NetRexx programs manipulate values
Values have an associated type or class

The type identifies
— the nature of the value
* properties
— and the operations that can be carried out on the value
* Methods
Optionally qualified by package name (‘package’ instruction)

NetRexx has its own default class in package netrexx.lang
- Rexx
* Asequence of characters with well-known rexx methods for arithmetic operations and string manipulation
* substr, overlay, pos, translate, abs, format changestr, etc
Primitives types
— boolean char byte short int long float double
— while not defined as class (not a subclass of java.lang.Object), no syntax distinction

Types and classes

 Dimensioned types
- Types that have an associated dimension
- Represented by square brackets [], with zero or more comma'’s
— Dimension is number of comma's +1
* Rexx type is distinct from Rexx[] type
e int[10,10,10], a three-dimensional array
* Minor and dependent classes
- Qualified by the 'parent’
- Foo.Bar, to any depth, Foo.Bar.Pod

- Short name access to methods and properties

Terms

* A syntactic unit which describes some value

* Simple term

~ Aliteral string
* 'hello world'

A symbol
° one

A method call, ‘(' must be followed immediately after method name
°* add(one, '2'")

~ Anindexed reference
°* 1inf[one, two]

An array initialiser
* [1, 2]

A sub-expression
* (one / '2'")

Terms

Compound term
- Asimple term, or qualified class, or qualified constructor (the 'stub’)

- Optionally followed by a continuation
e one or more symbols (non-numeric), method calls or indexed references
e separated by connector .

- 'hello world'.word(2).pos('o"')

- java.lang.math.PI

- ('hello' 'world').wordpos('hello')
- 1in[1, two].length()

Methods

 Named routines belonging to a class

- Referenced in a term, possibly part of an expression
e X = whatIsX()

- Aclause on its own

* a method on 'this', returned value discarded
- this.Is('X")

* Or a constructor method
- X('wasTwitter')

* (' must immediately follow the name of the method which must be non-numeric
e Variable number of arguments

When no arguments '()' can be omitted

Methods

Method resolution

~— Ifin 'stub’ of term
* Search current class
* Search super classes, which this current class 'extends'
* Search 'uses' class-list
* Search constructor
~— Else, stub must evaluate to a value of a type (or just a type)
* Search type for method
* Search super classes of type

Finding the method
- Same name
— Same number of arguments and argument types
~ Return type must match

If more than one candidate
* Conversion cost of arguments determines (lower is better)

Methods

Method overriding
- Same name as other class
- The method in the other class is not 'private’

- The other class is a super class of this class (‘extends') or this class 'implements' the other
class

- The number and type of arguments match exactly

- Must return same type (or a subclass of the type)

Return types
- When method declaration 'returns' a type, the value of the type must be returned

- Otherwise, anything or nothing can be returned

Methods

Constructor methods
- Used to create a value of given type
- Named identical to class name

- Returns an 'instance' of the class, a value of the type

If not present, default constructor with no arguments is implicitly created

- Unless all 'static' or 'constant’, or 'interface’
Always parentheses ()

Must call constructor in super class

— If not present call to super() is implicitly added

Returns 'this’

Type conversions

* When a value involved in an operation has a different type than needed

* Automatic conversion when no loss of information

— Source and target are same type

— Target type is superclass of source type

— Source type has a dimension and target is Object

— Source type is null and target is not primitive

— Target and source types have well-known conversions
* Rexx to binary number, char[], String, or char
* String to binary number, char[], Rexx, or char
* char to binary number, char[], String, or Rexx
* char[] to binary number, Rexx, String, or char
* binary number to Rexx, String, char{], or char
* binary number to binary number (if no loss of information can take place)

Type conversions

Explicit conversion (cast), possible loss of information
~ Permitted for all automatic conversions
~ Target type is a subclass of source type, or 'implements' it
~ Both target and source type are primitives
~ Target type is Rexx, or String
Conversions have a cost
Cost is calculated to select methods when several possibilities are there

Automatic conversions have following cost
~— Zero when source and target have same type, or source type is null and target is primitive

~— Different costs for conversions between primitives
* 8-bit to 64-bit number cost is higher than 8-bit to 32-bit number

~ Conversions which require creation of a new object have higher cost than those that don't
~— Conversions that may raise an exception cost more than those that never falil

Expressions and operators

An expression is 'a general mechanism for combining one or more data items in various ways to
produce a result, usually different from the original data’

Consist of one or more terms and zero or more operators which denote operations to be carried
out on the terms

- Most operators act on two terms

— Also prefix operations
Evaluated from left to right, modified by parentheses (), and by normal algebraic precedence

The result of evaluating any expression is a value, which has a known type

Expressions and operators

* Operators are constructed from one or more operator characters
* Five groups

- Concatenation

- Arithmetic

- Comparative

- Logical

- Type operators

* First four work with strings or things converted to strings without information loss

Expressions and operators

Concatenation operations

— Blank'two' 'strings'

- | 'two'|| ' strings'

— Abuttal ‘'two "strings'
Arithmetic operations

- 4

~— % integer divide

— // Remainder

- * Power

— Prefix -

— Prefix +

— Requires both terms to be numbers

Expressions and operators

 Comparative operators
- Normal
e = \= >«

¢« <> >< greater than or less than , \=

e >=\<
e <=\>
- Strict
e == \==>><<
e >>=\<<
¢ =\>>

- Some operators require both terms to be numbers

Expressions and operators

Boolean operators

- &

-

- && Exclusive or
- Prefix\ Not

In binary classes the operators act on all integers bits
* Type operator
~ String "abc"
Exception e
If i<=Object then say 'i is an Object’
If String => i then say 'i is a String’
If String <= Object then say 'String is an Object
* <= or => tests whether value or type is a subclass of or same class, or vice versa

Expressions and operators

Numbers

- Well-known Rexx syntax
119’
-17.9°
'0127.0650
'"73e+128’
'+ 7.9E-5"
'00E+000’

Indexed strings and arrays

Indexed strings aka stems

Must be a Rexx type, with value assigned before using sub-values
[must follow immediately after term
‘array' style syntax

surname = 'Unknown

surname['Fred']='Bloggs'

surname['Davy']="Jones'

try="'Fred'

say surname[try] surname['Bert']
Multi-level

x="'"

x['foo', 'bar']='OK'

say x['foo', 'bar']

y=x['foo']

say y['bar']
loop name over surname; say surname[name];end
surname.exists('Bob')

Assign null to drop sub-value

Indexed strings and arrays

Arrays
~ Fixed size
~ [must follow immediately
~ Zero- based
~ Multi-dimensional

~ Declaration
* a=int[], a one-dimensional array of integers
* m=Rexx],,], a three-dimensional array of Rexx types

~ Construction
* a=int[3], a one-dimensional array for 3 integers
* m=Rexx[3,3,3], a 3x3x3 array for Rexx types
~— Initialisation
* a=[1, 2, 3], an array of three integers, 1, 2 and 3
* m=[[1,2], [3,4]], a two-dimensional array for integers, with values 1, 2 and 3, 4

Clauses and instructions

Null clauses
~ Ignored

Assignments
~ term = expression

Method call
=~ A method invocation()

Keyword instruction

— one or more clauses, the first of which starts with a non-numeric symbol which is not the
name of a variable or property in the current class

* Interestingly, you can have if as a variable name,
* extend NetRexx by creating new keyword instructions
* and stay backwards compatible

Assignments and variables

term = expression
Variable (term) has a type, determined by first assignment, cannot change

Variable scope

— Properties
* Belongs to class

- Method arguments
* Belongs to method

— Local variables
* Belongs to method
Names must be unique within a class, and are case-insensitive
- Fred = FRED = fred
Variables are handles, multiple variables can refer to same value
first="A string'
second=first
first = 'A changed string'
So is second

Keyword instructions

Well-known Rexx instructions

Execution control
« if, loop, iterate, leave, select, signal, do, return, exit

Class definition
e class, properties, method

- Meta
* package, import, options, numeric, annotation

Miscellaneous
e trace, say, parse, interpret, address, nop

Built-in methods

* Well-known Rexx built-in methods are available on the Rexx type (see netrexx/lang/Rexx.nrx)

- String manipulation
* changestr, insert, pos, lastpos, right, left, overlay, upper, translate..

- Number methods
 format, abs, d2x, x2d, x2b, max, min..

- Misc
* datatype, exists, date, time ..
 All available as method on the Rexx instance

- say 'Now is the time'.subword(1, 2)

* And per netrexx/lang/RexxRexx.nrx in ‘classic' non-oo style

- say subword('Now is the time', 3, 2)

