
Peter Jacob
Decommissioned, not Deprecated

“…and now for something completely interpreted.”
- The Ministry of Silly Opcodes

From BREXX to BREXX/370
The Journey

An evolution nobody asked for – but we did it anyway

Peter Jacob
Decommisioned, not Deprecated

“REXX reads like English,
runs like C,

and debugs like a dream”

2

Yes, I know — I’m preaching to the choir.

3
Me — retired, but only from employment,
not from strange ideas

The House of BREXX
Vasilis Vlachoudis, PhD

Physicist at CERN

Inventor of BREXX

Mike Großmann
by day
Beta Systems Software AG

by night:
co-migrator, chaos-tamer,
and the reason BREXX/370 still talks to us.

BREXX
Revisiting

the
Origins

In 2001, Vasilis Vlachoudis presented
BREXX at this conference,
introducing a compact, efficient REXX
interpreter for various non-mainframe
platforms —a model of clarity and
portability.

His architecture provided a robust
starting point.

While BREXX/370 targets the IBM
mainframe environment, it still builds
directly on the structure and principles
he established.

Before we dive into the new features,
let’s take a quick look at a few of his
original foils —
the roots of what has now evolved
into BREXX/370.

Vasilis
Vlachoudis

Author of
BREXX

Studied Physics at Aristotle University of Thessaloniki (1987–
1991), where he first encountered REXX on a VM/370 system — an
experience that sparked a lifelong interest.

After struggling to find a functional REXX interpreter for MS-DOS,
he began developing his own from scratch.

During his PhD at CERN (1996), he rewrote and optimized the
interpreter, resulting in BREXX, originally designed for Monte Carlo
data processing.

Today, he is a Senior Physicist at CERN, leading the FLUKA and
FLAIR projects — while his contribution to REXX lives on through
the BREXX project.

The core REXX language and processing remained unchanged

Other functionality and enhancements were provided as MVS-
owned add-ons.

His original architecture continues to inspire — and serve as the
foundation for BREXX/370.

From BREXX to BREXX/370: The Journey

From BREXX to BREXX/370: The Journey

The compiler manually handles parsing and tokenising code using
custom C code instead of using Lexer, Parser and Generators.

Now on
https://github.com/vlachoudis/bREXX

https://github.com/vlachoudis/brexx
https://github.com/vlachoudis/brexx

From BREXX to BREXX/370: The Journey

From BREXX to BREXX/370: The Journey

From BREXX to BREXX/370: The Journey

From BREXX to BREXX/370: The Journey

Why
Mainframes
Still Matter

12

Why
Mainframes
Still Matter

13

Aspect Mainframe (e.g., IBM z/OS) PC / Distributed Systems

Purpose
High-volume, mission-
critical processing

General use / horizontal
scaling

Uptime
Designed for near-100%
availability (99.999%)

Acceptable downtime;
built-in failover needed

Users
Thousands of concurrent
users on one machine

Usually 1 user per PC;
distributed uses many

Performance
Massive I/O throughput,
batch & transaction-heavy

Great at parallel tasks,
web, microservices

Security
Centralized, highly secure
environments

Varies; more exposed
surface across nodes

Longevity
Runs decades-old apps
reliably

Shorter lifecycle; frequent
upgrades

Performance: It’s Not Apples to Apples

It’s not about clock speed — it’s about what the system is built to do

z16 Mainframe CPU
• Built for throughput & reliability

• Delegates to specialised processors

• Optimised for 24/7 enterprise-scale workloads

• Secure, consistent, highly scalable

z16 Mainframe CPU
• Built for throughput & reliability

• Delegates to specialised processors

• Optimised for 24/7 enterprise-scale workloads

• Secure, consistent, highly scalable

Commodity CPU
• Built for speed & versatility

• Handles most tasks internally

• Great for short, bursty workloads

• Distributed, flexible, modular

Commodity CPU
• Built for speed & versatility

• Handles most tasks internally

• Great for short, bursty workloads

• Distributed, flexible, modular

 A z16 doesn't try to win the GHz race — it wins the enterprise marathon.

Performance:
It’s Not Apples to Apples
• IBM z16 Processor (Telum chip):
- 8 cores per chip
- Up to 5.2 GHz

•
Commodity CPUs (e.g. Intel Core i9-13900K):
- 24 cores (8 P + 16 E)
- Up to 5.8 GHz

•
Mainframes CPUs are designed for

• throughput

• system-level reliability,

• massive parallelism across enterprise-scale workloads.

• z16 Advantages Beyond Raw Speed:

• Simultaneous Multi-Threading (SMT) optimised for I/O-heavy workloads

• On-chip AI inference with sub-millisecond latency

• Cache and memory architecture tuned for sustained high-load performance

• Vertical scaling up to 200+ cores across drawers, all managed as a single system

Mainframes: The Central Point of Control

Mainframe CPU – The
Conductor

Delegates tasks to assist processors
SAPs: I/O operations
IFLs: Linux workloads
zIIPs/zAAPs: DB2, Java, XML
Crypto cards: encryption

Enables high throughput & reliability

Mainframe CPU – The
Conductor

Delegates tasks to assist processors
SAPs: I/O operations
IFLs: Linux workloads
zIIPs/zAAPs: DB2, Java, XML
Crypto cards: encryption

Enables high throughput & reliability

Commodity CPU – The Soloist

• Handles most tasks internally
• Less delegation,
• general-purpose logic
• Optimized for parallel user workloads
• Requires distributed system for scaling
• More moving parts, more management

Commodity CPU – The Soloist

• Handles most tasks internally
• Less delegation,
• general-purpose logic
• Optimized for parallel user workloads
• Requires distributed system for scaling
• More moving parts, more management

17

All theory, now
let it roar. Loud.

The Great IPL
Awakening:

From BREXX to BREXX/370 The
Journey

Compiler: JCC (MVS 3.8 C Compiler)

• Used for BREXX migration

• Built specifically for MVS 3.8 environments

• Not a modern development toolchain

• No longer actively maintained

C Language Support

• Supports only C89 (ISO/IEC 9899:1990)

• Lacks support for modern C standards (C99/C11)

• Severely restricts maintainability and modernization

• Outdated features and tooling introduce development overhead

Library Limitations

• Memory management worked — until it didn’t

• Standard C Library: Incomplete

• Missing or inconsistent libc functions

• No support for POSIX or third-party libraries

• Forces custom, time-consuming implementations

18
It seemed like a good idea. At the time. In the fog.

From BREXX to BREXX/370: the
Journey

First Release 1. April 2019

Several Releases since then, the current release V2R5M3

Delivered Documentation:

• Installation document

• BREXX/370 User’s Guide

• Formatted Screens User’s Guide

• VSAM User’s Guide

• BREXX Arrays

Releases available at: https://github.com/mvslovers/brexx370/releases

Original BREXX available at: https://github.com/vlachoudis/brexx

19

https://github.com/mvslovers/brexx370/releases
https://github.com/vlachoudis/brexx

Performance MVS % Windows

----- REXXCPS 2.1 -- Measuring REXX clauses/second -
REXX version is: BREXX/370 V2R5M3 (Jan 29 2025)

System is: UNIX
Averaging: 100 measures of 100 iterations

Performance: 17847138 REXX clauses per second

BREXX Statistics
Instructions 8041038
Elapsed Time 1.016517 secs
Instructions 7910514.510575/secs

20On Windows and Linux, BREXX/370 delivers performance up to 100x faster than its MVS counterpart.

REXX Performance Comparison
REXX Version System Date Clauses/sec Elapsed Time (s) Instructions/sec

BREXX/370 V2R5M3 L03 MVS Sep 24, 2024 43,077 232.267 34,619.80

BREXX UNIX Apr 16, 2025 17,847,138 - -

REXX-Regina 3.9.3(MT) WIN64 Oct 5, 2019 10,122,503 - -

OOREXX 6.05 WindowsNT Jun 25 2024 12,077,295

PIII -900 MHz Unix Apr 7, 2000 1,157,435

21

The moment has come. It’s showtime.

Destiny awaits.

The cursor blinks. The system awakens!

The moment has come. It’s showtime.

Destiny awaits.

REXX code is executed via a streamlined token stream

~ 100 base instructions

24

Where
time is
consumed

(CALGRIND)

25

~ 50 % Time used

N
o

w
O

ff
-R

o
ad

26

BREXX‘s Distinct Characteristics

27

Good performance

Pre-compiled (tokenising at
run time)

Split into elementary tokens
Tokens placed into a Token Stream (array)
Variables and STEMs resolved via binary tree lookup
Compiled into stack operations using Reverse Polish
Notation (RPN)

Execution runs the Token Stream

Benefits / Disadvantages

The Token Stream is live – and it may grow as needed
Labels must be unique over the Token Stream
Call of procedures (labels) work within the stack
This allows call-back procedures
Variables unique and accessible/maintainable in all
Procedures (without PROCEDURE statement)

Pre-compiled % Compiled

BREXX
approach

28

BREXX takes a direct, integrated
approach to compilation

No separate lexer, tokeniser, or
parser stages

No abstract syntax tree (AST)

Tokenisation directly drives
bytecode generation

Simplified structure supports
minimal tooling and fast execution

• Lexer (Lexical Analysis)

• Tokeniser (Tokens)

• Parser (Syntactic Analysis)

- Grammar (REXX)

• Abstract Syntax Tree (AST)

• Code Generator

29

Pre-compiled % Compiled

CREXX
approach

CREXX Compilation Process

•Converts raw source code into lexemes (e.g., count = 10; → [count], [=],, [;]).

•Uses rules like regular expressions to identify lexemes.

Lexer (Lexical Analysis):

•Converts lexemes into structured tokens (e.g., IDENTIFIER(count), EQUALS(=), NUMBER(10), SEMICOLON(;)).

tokeniser (Tokenization):

•Builds syntactic structure from tokens using grammar rules.

•Example: assignment_statement → identifier '=' expression ';'.

Parser (Syntactic Analysis):

•Simplified tree representation of syntactic structure.

•Example: Assignment├── Identifier: count └── Value: 10.

Abstract Syntax Tree (AST):

•Converts AST into CREXX assembly code.

•Example: count = 10 → MOV [memory_address], 10.

Code Generator:

•Source Code → Lexer → tokeniser → Parser → AST → Code Generator → Target Code.

Complete Workflow:

30

31

BREXX/CREXX
Diverging Designs

 Shared Goals

To
BREXX/370 Layer
Concept

32

BREXX
Layer
Concept

33

BREXX Layer Concept

BREXX Kernel (C code)

RXLIB BREXX Library (BREXX Code)

SYSEXEC REXX User Library (BREXX Code)

Call base REXX function e.g. SUBSTR, WORD, etc.
call embedded REXX function WORDDEL, WORDREP, LOCK (ENQ/DEQ)

other functions formatted screen, NJE38, …
other functions User REXX functions

Kernel-embedded BREXX Code (in C Code)

Software Release

34

BREXX/370
Embedded Kernel Functions

Transparent integration of REXX-written core utilities

C now speaks REXX. Not fluently—but enough to get into trouble.

Embedded REXX Functions

36

BREXX supports embedded kernel functions written in REXX code strings, which are
transparently loaded and behave like native built-in functions.

• Defined in C via `RxPreLoad()` as string-based REXX procedures

• Automatically injected at runtime when referenced

• Appear native to the interpreter and user

• Allows definition of new procedures on the fly

• No visible distinction from compiled commands

Examples of Embedded Kernel Functions

37

These REXX functions are defined in `preload.c` and transparently loaded:

• PEEKA, PEEKU, PEEKN – memory inspection

• BASE64ENC, BASE64DEC – base64 utilities

• STEMCOPY, STEM2LL, LL2STEM – stem/list conversions

• DATETIME, EPOCH2DATE – date/time formatting

• JOBINFO, SYSVAR – system environment access

• MOD, ROOT, CLRSCRN – general-purpose utilities

• etc. …

Embedded
Kernel

 Functions

Design
Advantages

This mechanism
provides several

architectural
benefits:

• Extends
functionality

without modifying
interpreter core

• Keeps kernel
flexible and

modular

• Enables quick
updates or patches

in REXX itself

• Simplifies
maintenance and

portability

• Provides a
powerful form of
dynamic linking

38

Example
LISTVOLS

volumes of a
MVS System

39

} else if (strcmp((const char *) LSTR(rxf->name), "LISTVOLS") == 0) {
RxPreLoad(rxf,"LISTVOLS: Procedure expose volumes.; trace off; parse upper arg option; call privilege('on'); call outtrap('dev.');"

"ADDRESS COMMAND 'CP DEVLIST'; call outtrap('off'); call privilege('off'); bi=0; do volj=1 to dev.0;"
"parse upper value word(dev.volj,4) with dasd'/'vol'.'dev; if dasd<>'DASD' then iterate; bi=bi+1;"
"unit=word(dev.volj,3); buffer.bi=vol' 'unit' 'dev; end; bi=bi+1; buffer.0=bi; buffer.bi=bi-1' Volumes found';"
"if abbrev('FMTLIST',option,3)>0 then call fmtlist ,,'Volume Unit Device'; else if abbrev('LIST',option,3)>0 then do;"
"say 'Volume Unit Device'; do i=1 to buffer.0; say buffer.i; end; end; else do; buffer.0=buffer.0-1;"
"do i=0 to buffer.0; volumes.i=buffer.i; end; end; return;");

Deep inside the BREXX Reactor Core, this REXX module continues to
deliver time-tested power.":

The moment has come. It’s showtime.

Destiny awaits.

BREXX/370

Added
Features
part I

ADDRESS FSS Formatted Screen Services

 Menus, Screens, Lists

ADDRESS LINK/LINKMVS/LINKPGM/ATTACH
 Call external programs

ADDRESS MVS Interface to certain REXX environments
 as VSAM and EXECIO

ADDRESS TSO Interface to the TSO commands, e.g.
 LISTCAT, ALLOC, FREE, etc.

ADDRESS COMMAND
 Interface to the Host system of your

 MVS system. Typically Hercules or
 VM370

VSAM KSDS support read and write VSAM records

If it blinks, logs, or sighs—REXX can interface it. 41

BREXX/370

Added
Features
part II

TCP/IP Interface Building TCP servers as well as TCP clients

Operator Interface sending operator commands

Receiving Master Trace Table events

Dynamic Dataset Service
CREATE/ALLOCATE/FREE/OPEN (new) Datasets

Create and execute REXX scripts on the fly

Global and Profile Variables read/write variables across
procedures

OUTTRAP hijack write to terminal (say …)

Interface to NJE38 communicating with other MVS and
CMS sites: messages and datasets

New REXX Functions many, many

42

The moment has come. It’s showtime.

Destiny awaits.

MVS 3.8

special
functions

RXMVS adds a large set of specialized functions for BREXX that interface
directly with IBM MVS and TSO (Time Sharing Option) environments

These functions are not part of standard REXX, but are tightly bound to:

MVS-style datasets and file structures (PDS, PS)

MVS system information blocks (CVT, PSA, SMCA)

TSO-specific features (console access, SVC calls, user IDs)

System Privilege Management (via Privilege, SYSVAR, etc.)

JES/NJE environment integration (e.g., SYSNJVER, RxNjeGetNetId)

ENQ/DEQ Services to guarante transaction control over databases

Low-level data and memory access (e.g., dumpIt, outtrap, updateIOPL)

44

BREXX MVS Integration Overview

If it can be called, piped, or poked—BREXX can handle it
45

BREXX includes extensions
tailored to IBM MVS systems,

adding powerful scripting
capabilities for system

interaction, dataset access,
security, and console control.

• Access to datasets (PS, PDS),
directory entries, record

counts

• Use of SVCs and TSO console
commands

• Low-level ENQ/DEQ locking
mechanisms

• Dynamic privilege control
and environment detection

(Hercules, VM/370)

• Integration with NJE, SMF,
RACF environments

BREXX/370 Array Extensions
BREXX vs. BREXX/370 – Variable Management

BREXX:

• Variables in BREXX are organized using a binary tree structure.

• While flexible, this approach introduces significant overhead in:

• Memory usage (due to metadata and pointer structures)

• Performance, especially during intensive iteration or when dealing with a large number of variables

• Each variable access requires tree traversal, slowing down execution.

BREXX/370:

• Variables in BREXX are organized using a binary tree structure.

• Introduces native array support, allowing direct indexed access to data.

• Arrays eliminate the need for binary tree traversal, providing:

• Faster variable access

• Reduced memory overhead

• Improved performance in highly iterative or data-heavy tasks

Key Advantage: Arrays in BREXX/370 significantly optimize storage and execution speed,
making it more efficient for large-scale or performance-critical REXX applications.

46
If I have time to press Enter, it’s not fast enough.

High-Performance Array Support in BREXX

BREXX introduces internal
string, integer and float

arrays, bypassing traditional
REXX variable pools for faster

data processing.

• Arrays are stored outside
the normal symbol table /

variable pool

• String array: `sarray[]`, with
indexes via `sindex` and

`sarrayhi[]`

• Integer and Float arrays:
optimized for numeric

lookup, manipulation, and
batch updates

• Operations supported: sort,
search, batch load/store

• Greatly reduces CPU load
for large-scale operations vs.

stem variables

• Designed for MVS
workloads and system-level

scripting efficiency

47

sarray[]: High-Speed String Arrays

`sarray[]` is a fast, low-overhead string array structure designed for heavy-duty scripting.

• Defined as `char *sarray[sarraymax]`, outside normal REXX variable pools

• Directly accessed by index, avoiding stem variable performance limits

• `sarrayhi[]` tracks the highest index used in each array

• Optional `sindex[]` provides sorted views or lookup optimization

• Used for fast batch processing, logging, or system dataset parsing

• Ideal for MVS workloads where classic REXX is too slow

48

sarray[]: Memory Management

• SCREATE – Create a new sarray instance

• SRESIZE – Resize an existing sarray

• SFREE – Free the memory associated with sarray

• SARRAY – Return info/status of an sarray

49

sarray[]: Element Access & Assignment

• SSET – Set a value at a specific index

• SGET – Retrieve a value from a specific index

• SSUBSTR – Get a substring from an entry

• SWORD – Extract a word from an entry

• SLSTR – Convert list-style string into sarray

50

Example:
High-Speed
sarray[]
Access

• sarray[]: Because performance anxiety is real.

Example:
High-

Speed
sarray[]
Access

• sarray[]: Because
performance anxiety is
real.

STEM
SORT

sarray[]: Transformation & Modification

• SCHANGE –
Replace

occurrences of a
substring

• SREVERSE –
Reverse the order

of entries

• SSWAP – Swap
two entries by

index

• SCLC – Clear array
content

• SCOPY – Copy
one sarray to

another

• SINSERT – Insert a
new entry

• SDEL – Delete an
entry by index

• SPASTE – Append
entries from

another source

54

sarray[]: Search & Selection

• SSEARCH – Search
for an entry

• SSELECT – Select
entries by pattern
or value

• SKEEP – Keep
matching entries

• SKEEPAND – Keep
entries matching
multiple conditions

• SDROP – Drop
matching entries

55

sarray[]:
Sorting &
Counting

• SQSORT – Quick
sort for entries

• SHSORT – Shell
sort (likely stable)

• SCOUNT – Count
elements or
pattern matches

56

The moment has come. It’s showtime.

Destiny awaits.

sarray[]: Set Operations

• SMERGE – Merge
sorted sarrays

• SINTERSECT –
Intersection of arrays

• SDIFFERENCE –
Difference (A not in B)

• SUNIFY – Remove
duplicates

58

sarray[]: Load & Store

• SREAD – Load
sarray from file or
source

• SWRITE – Write
sarray to file or
target

• S2LL – Convert to
linked list

• S2IARRAY –
Convert to integer
array

• SLIST – Return
sarray as a
stem/list

59

I Came for
the Vectors,
Stayed for
the Drama

Exploring the Unexpected
Passion of Linear Algebra in
BREXX

My Groundhog Day: One Thesis, Many Languages

Why Matrix Operations
Matter

Matrix Operations in BREXX are foundational tools for implementing many statistical and analytical
methods:

Correlation Analysis – based on covariance and matrix algebra

Regression Analysis – uses matrix inversion and multiplication

Factor Analysis – relies on eigenvalue decomposition and matrix transformations

Principal Component Analysis (PCA) – transforms data into eigenvector space

Data Normalisation, aggregation, and reduction techniques

Enables advanced statistical modelling within REXX scripts

The moment has come. It’s showtime.

Destiny awaits.

Matrix Operations: Creation &
Access

MCREATE – Create a new matrix

MGET – Retrieve value at a given
row/column

MSET – Set value at a given row/column

MDELCOL – Delete a column

MDELROW – Delete a row

Matrix
Operations:

Manipulation

• MCOPY – Copy
one matrix to
another

• MTRANSPOSE –
Transpose matrix (flip
rows/columns)

• MNORMALISE –
Normalize data across
rows or columns

• MINVERT – Invert
the matrix (if square
and invertible)

64

Matrix
Operations:
Arithmetic

• MMULTIPLY – Multiply two
matrices

• MADD – Add two matrices

• MSUBTRACT – Subtract matrices

• MPROD – Element-wise product

• MSQR – Square each element

• MSCALAR – Multiply matrix by a
scalar

65

Linear Algebra:

Correlation &
Regression

66

And now, before
we're escorted
out by an angry
mob with
torches, we shall
summarise… and
leg it.

67

BREXX/370
—

Summary

Rooted in Proven Design
Built upon the original BREXX interpreter
by Vasilis Vlachoudis — a compact,
portable implementation of REXX that set
the foundation.
Adapted for Mainframe Environments
BREXX/370 brings this design to the IBM
MVS 3.8 platform, extending core
functionality while remaining true to its
architectural simplicity.
System-Level Integration
Deep integration with MVS subsystems:
VSAM, NJE38, formatted screen I/O, and
more — enabling seamless scripting for
complex system interactions.
Expanded Capabilities
Enhanced with array support, embedded
functions, and matrix operations —
enabling data analysis, transformation,
and advanced scripting.

Sustainable and Documented
Continuously maintained, with full
documentation, source availability, and a
transparent development approach.

Same Language, New Ground
BREXX/370 continues the REXX tradition:
readable, robust, and remarkably
adaptable — now fully at home on the
mainframe.

The BREXX/370
Development

Team

Mike & Peter

69

So long,
and thanks
for all the

STEMs!

70

	Folie 1
	Folie 2: “REXX reads like English, runs like C, and debugs like a dream”
	Folie 3: Mike Großmann by day Beta Systems Software AG by night: co-migrator, chaos-tamer, and the reason BREXX/370 still talks to us.
	Folie 4: BREXX Revisiting the Origins
	Folie 5: Vasilis Vlachoudis Author of BREXX
	Folie 6: From BREXX to BREXX/370: The Journey
	Folie 7: From BREXX to BREXX/370: The Journey
	Folie 8: From BREXX to BREXX/370: The Journey
	Folie 9: From BREXX to BREXX/370: The Journey
	Folie 10: From BREXX to BREXX/370: The Journey
	Folie 11: From BREXX to BREXX/370: The Journey
	Folie 12: Why Mainframes Still Matter
	Folie 13: Why Mainframes Still Matter
	Folie 14: Performance: It’s Not Apples to Apples It’s not about clock speed — it’s about what the system is built to do
	Folie 15: Performance: It’s Not Apples to Apples
	Folie 16: Mainframes: The Central Point of Control
	Folie 17
	Folie 18: From BREXX to BREXX/370 The Journey
	Folie 19: From BREXX to BREXX/370: the Journey
	Folie 20: Performance MVS % Windows
	Folie 21: REXX Performance Comparison
	Folie 22
	Folie 23
	Folie 24
	Folie 25: Where time is consumed (CALGRIND)
	Folie 26: Now Off-Road
	Folie 27: BREXX‘s Distinct Characteristics
	Folie 28: Pre-compiled % Compiled BREXX approach
	Folie 29
	Folie 30: CREXX Compilation Process
	Folie 31
	Folie 32
	Folie 33: BREXX Layer Concept
	Folie 34: BREXX Layer Concept
	Folie 35: BREXX/370 Embedded Kernel Functions
	Folie 36: Embedded REXX Functions
	Folie 37: Examples of Embedded Kernel Functions
	Folie 38: Embedded Kernel Functions Design Advantages
	Folie 39: Example LISTVOLS volumes of a MVS System
	Folie 40
	Folie 41: BREXX/370 Added Features part I
	Folie 42: BREXX/370 Added Features part II
	Folie 43
	Folie 44: MVS 3.8 special functions
	Folie 45: BREXX MVS Integration Overview
	Folie 46: BREXX/370 Array Extensions BREXX vs. BREXX/370 – Variable Management
	Folie 47: High-Performance Array Support in BREXX
	Folie 48: sarray[]: High-Speed String Arrays
	Folie 49: sarray[]: Memory Management
	Folie 50: sarray[]: Element Access & Assignment
	Folie 51: Example: High-Speed sarray[] Access
	Folie 52: Example: High-Speed sarray[] Access
	Folie 53: STEM SORT
	Folie 54: sarray[]: Transformation & Modification
	Folie 55: sarray[]: Search & Selection
	Folie 56: sarray[]: Sorting & Counting
	Folie 57
	Folie 58: sarray[]: Set Operations
	Folie 59: sarray[]: Load & Store
	Folie 60: I Came for the Vectors, Stayed for the Drama
	Folie 61: Why Matrix Operations Matter
	Folie 62
	Folie 63: Matrix Operations: Creation & Access
	Folie 64: Matrix Operations: Manipulation
	Folie 65: Matrix Operations: Arithmetic
	Folie 66: Linear Algebra: Correlation & Regression
	Folie 67: And now, before we're escorted out by an angry mob with torches, we shall summarise… and leg it.
	Folie 68: BREXX/370 — Summary
	Folie 69: The BREXX/370 Development Team Mike & Peter
	Folie 70: So long, and thanks for all the STEMs!

