From BREXX to BREXX/370

R
, S R 8, T

.\-h.

The Journey BN

... An evolution nobody asked for — but we did it anyway
4 = ﬂ"“r s . : "“"“N?‘--.#-"IWWI“ Z
Peter Jacob

Decommis"'med, not Deprecated

\k'\\

5=
. Y
.



“REXX reads like English,
runs like C,
and debugs like a dream”

Yes, | know — I’'m preaching to the choir.



The House of BREXX

Vasilis Vlachoudis, PhD

Physicist at CERN
Inventor of BREXX

Wl
iU
i

||||||||
N

-

Mike GroBmann
by day
Beta Systems Software AG

by night:
co-migrator, chaos-tamer,

Me — retired, but only from employment,
not from strange ideas




BREXX
Revisiting
the
Origins

In 2001, Vasilis Vlachoudis presented
BREXX at this conference,
introducing a compact, efficient REXX
interpreter for various non-mainframe
platforms —a model of clarity and
portability.

His architecture provided a robust
starting point.

While BREXX/370 targets the IBM
mainframe environment, it still builds
directly on the structure and principles
he established.

Before we dive into the new features,
let’s take a quick look at a few of his
original foils —

the roots of what has now evolved
into BREXX/370.



Vasilis
Vlachoudis

Author of
BREXX

Studied Physics at Aristotle University of Thessaloniki (1987-
1991), where he first encountered REXX on a VM/370 system — an
experience that sparked a lifelong interest.

After struggling to find a functional REXX interpreter for MS-DOS,
he began developing his own from scratch.

During his PhD at CERN (1996), he rewrote and optimized the

interpreter, resulting in BREXX, originally designed for Monte Carlo
data processing.

Today, he is a Senior Physicist at CERN, leading the FLUKA and

FLAIR projects — while his contribution to REXX lives on through
the BREXX project.

The core REXX language and processing remained unchanged

Other functionality and enhancements were provided as MVS-
owned add-ons.

His original architecture continues to inspire — and serve as the

foundation for BREXX/370.




BRexx Overview

Rexx Symposium 2001
Vasilis. Vlachoudis@cern.ch
CERN SL-EET

From BREXX to BREXX/370: The Journey



Description

e BRexx is a freeware implementation of Rexx
¢ Quite compliant to the language spec

e Written entirely in ANSI-C

e Without lex, yacc

e Portable to various platforms
Unix, DOS, MS Windows, Windows CE, BeOS, Amiga, MacOS

The compiler manually handles parsing and tokenising code using

custom C code instead of using Lexer, Parser and Generators.
ftp://[ftp.gqwdg.de/pub/lanquages/rexx/brexx

1 May 2001

ithub.com/vlachoudis/bREXX

From BREXX to BREXX/370: The Journey


https://github.com/vlachoudis/brexx
https://github.com/vlachoudis/brexx

Advantages

e Small in size 80-200 kb

e Fast!
— rexxcps.r on a PIII — 900 MHz

REXXCPS 2.1 -- Measuring REXX clauses/second
REXX version is: REXX BNV R2.0.3 Apr 7 2000
System is: UNIX

Averaging: 100 measures of 100 iterations

Performance: 1157435. REXX clauses per second

1 May 2001 V. Vlachoudis CERN SL-EET

From BREXX to BREXX/370: The Journey



History

e 1991
e 1992
e 1994
e 1998
e 1999
e 2001

1 May 2001

First attempt
V1.0 Buggy

V1.3 Quite stable, slow!

Started working in
V2.0 New code, fas
V2.0.3 Current Vel

V. Vlachoudis CERN SL-EET

From BREXX to BREXX/370: The Journey

What changed from V1 to V2

e V1 interpreting on the fly
— Compact code
— Slow

e V2 compiles the Rexx code and then it
interprets the compiled code.

— Optimized (ie. use of caching for variable
access, ...)

— more than 10 times faster
— Needs slightly more memory for execution

1 May 2001 V. Vlachoudis CERN SL-EET



Differences with ANSI Rexx [2/2]

e Not implemented in BRexx:
— CALLONKX...>

— NUMERIC DIGITS [up to 15 digits]
+ All floating point operations are using doubles

— NUMERIC [FORM | FUZ2Z]
— TRACE RESULTS = INTERMEDIATES

Differences with ANSI Rexx [1/2]

1 May 2001 V. Vlachoudis CERN SL-EET

e Existing in BRexx and not in ANSI:
— BRexx I/O specific

< open, close, read, write, eof, flush, seek
[ All ANSI /O functions are supported also ]

— Math functions
* sin, cos, exp, pow, ...
— VM/CMS Stack
« “dir (stack”
From BREXX to BREXX/370: The Journey — LOAD() - importing external libraries
— Platform depended functions

1 May 2001 V. Vlachoudis CERN SL-EET 11



Variable Structure

e The variables are stored with a “hashlist”
pointing to optimized binary trees.

e There is a caching mechanism for accessing the
variables.

e Every procedure with private variable scope,
creates a new variable pool.

e Pools are indexed:

- 0 The main code ,
. 1 First procedure Variable Storage
e 2 Second
e VALUE(name[,[newvalue][,p: e Each variable in BRexx is stored as a length
1 May 2001 L prefix string, with 3 different types, integer, real,
string depending on the last operation on the
variable.
- a=“2.0" String
- a=“2” Integer [32 bit]
—a=a+1 Integer [32 bit]
—a=a+01 Real [64 bit]
— substr(a,2,1) String
From BREXX to BREXX/370: The Journey e All the conversions are transparent to the user

1 May 2001 V. Vlachoudis CERN SL-EET 13



Why
Mainframes
Still Matter

12



Why
Mainframes
Still Matter

Aspect

Purpose

Uptime

Users

Performance

Security

Longevity

Mainframe (e.g., IBM z/0S)

High-volume, mission-
critical processing

Designed for near-100%
availability (99.999%)

Thousands of concurrent
users on one machine

Massive 1/0 throughput,
batch & transaction-heavy

Centralized, highly secure
environments

Runs decades-old apps
reliably

PC / Distributed Systems

General use / horizontal
scaling

Acceptable downtime;
built-in failover needed

Usually 1 user per PC;
distributed uses many

Great at parallel tasks,
web, microservices

Varies; more exposed
surface across nodes

Shorter lifecycle; frequent
upgrades

13



Performance: It’s Not Apples to Apples

It’s not about clock speed — it’s about what the system is built to do

216 Mainframe CPU

Built for throughput & reliability
Delegates to specialised processors
Optimised for 24/7 enterprise-scale workloads

Secure, consistent, highly scalable

O Commodity CPU

Built for speed & versatility
Handles most tasks internally
Great for short, bursty workloads

Distributed, flexible, modular

# A z16 doesn't try to win the GHz race — it wins the enterprise marathon.




Performance:
It’s Not Apples to Apples

* IBM z16 Processor (Telum chip):
- 8 cores per chip
-Upto 5.2 GHz

Commodity CPUs (e.g. Intel Core i9-13900K):
-24 cores (8 P + 16 E)
- Up to 5.8 GHz

Mainframes CPUs are designed for

* throughput

* system-level reliability,

* massive parallelism across enterprise-scale workloads.
* 216 Advantages Beyond Raw Speed:

* Simultaneous Multi-Threading (SMT) optimised for I/O-heavy workloads

* On-chip Al inference with sub-millisecond latency

* Cache and memory architecture tuned for sustained high-load performance

* Vertical scaling up to 200+ cores across drawers, all managed as a single system



Mainframes: The Central Point of Control

Mainframe CPU — The

Conductor

Delegates tasks to assist processors
= SAPs: 1/0 operations

8 IFLs: Linux workloads

fi zIIPs/zAAPs: DB2, Java, XML

B2 Crypto cards: encryption
Enables high throughput & reliability

Commodity CPU — The Soloist

Handles most tasks internally

Less delegation,

general-purpose logic

Optimized for parallel user workloads
Requires distributed system for scaling
More moving parts, more management




All theory, now
let it roar. Lo

Tlme to IPL



From BREXX to BREXX/370 The
Journey

Compiler: JCC (MVS 3.8 C Compiler)

Used for BREXX migration

Built specifically for MVS 3.8 environments
Not a modern development toolchain

No longer actively maintained

C Language Support

Supports only C89 (ISO/IEC 9899:1990)

Lacks support for modern C standards (C99/C11)

Severely restricts maintainability and modernization

Outdated features and tooling introduce development overhead

Library Limitations

Memory management worked — until it didn’t
Standard C Library: Incomplete

Missing or inconsistent libc functions

No support for POSIX or third-party libraries

Forces custom, time-consuming implementations

It seemed like a good idea. At the time. In the fog.



From BREXX to BREXX/370: the
Journey

First Release 1. April 2019
Several Releases since then, the current release V2R5M3
Delivered Documentation:

* Installation document

«  BREXX/370 User’s Guide

* Formatted Screens User’s Guide
 VSAM User’s Guide

* BREXX Arrays

Releases available at: https://github.com/mvslovers/brexx370/releases

Original BREXX available at: https://github.com/vlachoudis/brexx

19


https://github.com/mvslovers/brexx370/releases
https://github.com/vlachoudis/brexx

Performance MVS % Windows

----- REXXCPS 2.1 -- Measuring REXX clauses/second -
REXX version is: BREXX/370 V2R5M3 (Jan 29 2025)
System is: UNIX
Averaging: 100 measures of 100 iterations

Performance: 17847138 REXX clauses per second
BREXX Statistics

Instructions 8041038

Elapsed Time  1.016517 secs

Instructions 7910514.510575/secs

On Windows and Linux, BREXX/370 delivers performance up to 100x faster than its MVS counterpart.



REXX Performance Comparison
S S S e [y

BREXX/370 V2R5M3 LO3 Sep 24, 2024 43,077 232.267 34,619.80
BREXX UNIX Apr 16, 2025 17,847,138 - =
REXX-Regina 3.9.3(MT) WIN64 Oct 5, 2019 10,122,503 - -

OOREXX 6.05 WindowsNT Jun 252024 12,077,295

PIll -900 MHz Unix Apr 7, 2000 1,157,435

REXX Performance Comparison (Clauses/sec)

BREXX/370 V2R5M3 LO3

BREXX

REXX-Regina 3.9.3(MT)

REXX Version

OOREXX 6.05

Pl -900 MHz

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Clauses per Second le7 21



e el
el

R —
——— e

The moment has come. It's s ime.
: = ‘. -
— E— ] C— ) lny awalts - szzzzzz

¥ _Hercules Version : 4.5.0.10820-SDL-DEV-g5198616
Host name ©oeitri

Host 0S5 Linux-4.4.0-210-generic #242-Ubuntu SMP Fri Apr 16 @9:57:56
Host Architecture : x86_64

Processors MP=2
LPAR Name HERCULES
Device number . 0:00C0

I T T

" R . P
222zz /,'.-'"" EEEEHH s wes }
Lde ) Y-, (e e rwn |
(e

The MVS 3.8j
Tur{n)key System . e .

TK3 created by Volker Bandke vbandke@bsp-gmbh . com
TK4- update by Juergen Winkelmann winkelmann@éid.ethz.ch
see TKA-.CREDITS for complete credits




:gzi iicmtecturp e%g_&i.ﬁ.@—Zl@gweéii¢ﬁ4§—Ubuntu SMP Fri Apr 1

Processors : MP=2
LPAR Name : HERCULES
Device number : 0:00C0

s 2 s s s s g ke ok ok ok ok s 3 ok ok s e s ok 2k
2 e e e 2 e e 2 e e
2 2 o e 2 2 A 2 e e
S 3 3 2
1 e e L
L

LZZzz /,"'.-""" ) - * ke o+ o ok
S P T T _ sk ok sk ok ok ok ok

'___"(_/__' e e e 2 2 e

o e A 2 e e

The MVS 3.8j ok e * * ok
Tur(n)key System * ok * ok * ok

e e e e e ok 1
1

TK3 created by Volker Bandke vbandke@bsp-gmbh.com
TK4- update by Juergen Winkelmann winkelmann@id.ethz.ch
see TK4-.CREDITS for complete credits

“cursor blinks. The system awakens!




,‘;J preload.c

i testR.rexx :;J compile.c ;J TEXX.C
TonuLT
switch (®*(Rxcip++)) {
/
*

/

* [mnemonic] <type=[voluel...

* tupe: b = bytq
* w = word
* !

= pointer 762

*/ 3

/% START A NEW COMMANG 964

case OP_NEWCLAUSE: 965

ULLlInstrlount++; 056
DEBUGDISPLAY®( =2 "NEWC

if (_trace) TraceClaus, .

#ifdef WCE -

#endif
goto main_loop;

/+ POP = NO OPERATY

case OP_NOP: 974
DEBUGDISPLAYB( a: "NOP" 975
goto main_loop; 976

/# PUSH p[lit] -

/% push a litteral ...
case OP_PUSH:

RxStckTop++; -
STACKTOP = (PLstr)(x(d
INCDWORD (Rxcip); ’
CHKERROR;
DEBUGDISPLAY( = "PUSH" 7%
goto chké4trace; 4

/* PUSHTMP */ 987

case 0OP_PUSHTMP:

RxStckTop++;

STACKTOP = &_tmpstrlRx
CHKERROR; -
DEBUGDISPLAYB( = "PUSH
goto main_loop; '

f RxInterpret 994

© - interpre.c

é. xlcc ;J soundex.c ,‘;J x2b.c é. d2c.c

i Idefsh

REXX code is executed via a streamlined token stream

7 PVE WIS SLuLn Llmana g

case OP_POP:
DEBUGDISPLAYB( a: "POP");
RxStckTop -= #(Rxcip++);
goto main_loop; 5

/% DUP blrel]
/* duplicate RELative st
case 0P_DUP:

RxStckTop++;
STACKTOP = RxStck[RxStckTop-
CHKERROR;

DEBUGDISPLAY( a: "DUP");
goto main_loop;

/* COPY */
/% copy (Lstrepy) top it
/* to previous one
case 0P_COPY:
DEBUGDISPLAY( a "COPY");
Lstrepy( to: STACKP( © 1),STAC
RxStckTop -= 2;

goto main_loop;

/% COPY2ZTMP */
J/* 1if top item is not o —
/* to o tmp var then cop
/* valve to a tmp var
case OP_COPYZ2TMP:

/* copy to temporary only if

if (STACKTOP != &(_tmpstr[Rx
Lstrepy(&(_tmpstrlRxStck
STACKTOP = &(_tmpstr[RxS

H

DEBUGDISPLAY( a "COPY2TMP");

goto main_loop;

/* PATCH wlrel] blcodel
/#* patch CODE string to
case 0P_PATCH:
w = *(CWORD *)Rxcip; INCW

f RxInterpret

~ 100 base instructions

/% LOAD p[leaf] */

J* push o VARiable to stack #*/

case OP_LDAD:
INCSTACK;
PLEAF(litleaf);

/* moke space

/* get varioble ptr */

DEBUGDISPLAYi( = "LOAD", b &(litleaf-=key));

inf = (IdentInfo#)(litle

/* check to see if we ha

if (inf->id == Rx_id) {
leaf = inf->leaf[o];
STACKTOP = LEAFVAL(L

} else { .
leaf = RxVarFind(varf;.:
if (found) .:.;

STACKTOP = LEAFV __
else { .

if (inf-s>stem) { ..

/* Lstrepy t.,
Lstrcpy(&(_t:;;ﬂ
STACKTOP = &
if (leaf==NU__
_procl_r
Rxsignalf-

RxSignal
STACKTOP = & _

goto chké4trace;

case OP_NEG:
DEBUGDISPLAY( = "NEG");
Lneg( to: STACKP( i 1) ,STACKTOP);
RxStckTop--;
goto chk4trace;

case OP_INC:
DEBUGDISPLAY( a: "INC");
Linc(RxStek [RxStckTop--1);
goto chkatrace;

case OP_DEC:
DEBUGDISPLAY( a "DEC");
Ldec (RxStck[RxStckTop--1);
goto chké4trace;

case OP_ADD:
DEBUGDISPLAY2( = "ADD");

Ladd( to: STACKP( © 2), A STACKP( © 1),§

RxStckTop -= 2;
goto chkatrace;

case OP_SUB:
DEBUGDISPLAY2( = "SUB");

Lsub( to: STACKP( & 2), A: STACKP( & 1),8

RxStckTop -= 2;
goto chkatrace;

case OP_MUL: 24
DEBUGDISPLAY2( = "MUL");

Tl 4§ +~ CTACKVDT + 9%

A CTACKDDT -« 1%



Where

time Is
consumed

(CALGRIND)




Entering the wilderness ...




BREXXs Distinct Characteristics

Good performance

Split into elementary tokens

P re-com p| | ed (to ke 1] |S| ng at Tokens placed into a Token Stream (array)
Variables and STEMs resolved via binary tree lookup

run t| m e) Compiled into stack operations using Reverse Polish
Notation (RPN)

Execution runs the Token Stream

The Token Stream is live — and it may grow as needed
Labels must be unique over the Token Stream
. . Call of procedures (labels) work within the stack
Be n Eflts / D|Sadva ntages This allows call-back procedures
Variables unique and accessible/maintainable in all
Procedures (without PROCEDURE statement)

27



Pre-compiled % Compiled

BREXX

approach

BREXX takes a direct, integrated
approach to compilation

No separate lexer, tokeniser, or
parser stages

No abstract syntax tree (AST)

Tokenisation directly drives
bytecode generation

Simplified structure supports
minimal tooling and fast execution



1= e Lexer (Lexical Analysis)

e Tokeniser (Tokens)

Pre-compiled % Compiled

A e Parser (Syntactic Analysis)

CREXX

approach - Grammar (REXX)

e Abstract Syntax Tree (AST)

QO e Code Generator




CREXX Compilation Process

Lexer (Lexical Analysis):

eConverts raw source code into lexemes (e.g., count = 10; = [count], [=],, [;]).
eUses rules like regular expressions to identify lexemes.

tokeniser (Tokenization):

eConverts lexemes into structured tokens (e.g., IDENTIFIER(count), EQUALS(=), NUMBER(10), SEMICOLON(;)).

Parser (Syntactic Analysis):

eBuilds syntactic structure from tokens using grammar rules.
eExample: assignment_statement - identifier '=' expression ';'.

Abstract Syntax Tree (AST):

eSimplified tree representation of syntactic structure.
eExample: Assignment F— Identifier: count L— Value: 10.

Code Generator:

eConverts AST into CREXX assembly code.
eExample: count = 10 - MOV [memory_address], 10.

Complete Workflow:

eSource Code - Lexer - tokeniser - Parser - AST - Code Generator - Target Code.

30




Diverging Designs
Shared Goals

Traditional
Compiler

Lexer

Parser

5
R
g

[Code Generator}

BREXX
Compiler

Tokenize &
Parse

l

C_instr

l

Bytecode
Emission




And now back

rom something

differex

To

BREXX/370 Layer
Concept

32



SYSEXEC (User REXX)
User-written functions

BREXX

N

RXLIB Layer
La ye r k BREXX Library Functons
>
BREXX Kernel
CO n Ce pt Base REXX Functions

(SUBSTR, WORD)
C-embedded core features

Operating System (MVS)
Files, Screens, NJE38

—




BREXX Layer Concept

MOD 1D
0 PEJ

Call base REXX function e.g. SUBSTR, WORD, etc. o2 - . o pes

9 PEJ

call embedded REXX function WORDDEL, WORDREP, LOCK (ENQ - s

PEJ

other functions formatted screen, NJE3S, ... - e

other functions User REXX functions ey

9 PEJ

l 5 5 PEJ

Kernel-embedded BREXX Code (in C Code)
BREXX Kernel (C code)

Software Release

String Functions




Transparent integration of REXX-written core utilities

BREXX/370

Embedded Kernel Functions

- == -
a\(./n, o -

C now speaks REXX. Not fluently—but enough to get into trouble.



Embedded REXX Functions

BREXX supports embedded kernel functions written in REXX code strings, which are
transparently loaded and behave like native built-in functions.

e Defined in C via 'RxPreLoad()" as string-based REXX procedures

e Automatically injected at runtime when referenced

e Appear native to the interpreter and user

e No visible distinction from compiled commands

36



Examples of Embedded Kernel Functions

These REXX functions are defined in "preload.c’ and transparently loaded:
e PEEKA, PEEKU, PEEKN — memory inspection
e BASE64ENC, BASE64DEC — base64 utilities

e STEMCOPY, STEM2LL, LL2STEM — stem/list conversions

e DATETIME, EPOCH2DATE — date/time formatting

e JOBINFO, SYSVAR — system environment access

e MOD, ROOT, CLRSCRN — general-purpose utilities

37



Embedded
Kernel
Functions

Design
Advantages

This mechanism
provides several
architectural
benefits:




Example
LISTVOLS
volumes of a

MVS System

Deep inside the BREXX Reactor Core, this REXX module continues to
deliver time-tested power.":

} else if (strcmp((const char *) LSTR(rxf->name), "LISTVOLS") == 0) {
RxPreLoad(rxf,"LISTVOLS: Procedure expose volumes.; trace off; parse upper arg option; call privilege('on'); call outtrap('dev.');"

"ADDRESS COMMAND 'CP DEVLIST'; call outtrap('off'); call privilege('off'); bi=0; do volj=1 to dev.0;"
"parse upper value word(dev.volj,4) with dasd'/'vol'.'dev; if dasd<>'DASD' then iterate; bi=bi+1;"
"unit=word(dev.volj,3); buffer.bi=vol' 'unit' 'dev; end; bi=bi+1; buffer.0=bi; buffer.bi=bi-1' Volumes found';"
"if abbrev('FMTLIST',option,3)>0 then call fmtlist ,,'Volume Unit Device'; else if abbrev('LIST',option,3)>0 then do;"
"say 'Volume Unit Device'; do i=1 to buffer.0; say buffer.i; end; end; else do; buffer.0=buffer.0-1;"
"do i=0 to buffer.0; volumes.i=buffer.i; end; end; return;");



e el
el

R —
——— e

The moment has come. It's s ime.
: = ‘. -
— E— ] C— ) lny awalts - szzzzzz

¥ _Hercules Version : 4.5.0.10820-SDL-DEV-g5198616
Host name ©oeitri

Host 0S5 Linux-4.4.0-210-generic #242-Ubuntu SMP Fri Apr 16 @9:57:56
Host Architecture : x86_64

Processors MP=2
LPAR Name HERCULES
Device number . 0:00C0

I T T

" R . P
222zz /,'.-'"" EEEEHH s wes }
Lde ) Y-, (e e rwn |
(e

The MVS 3.8j
Tur{n)key System . e .

TK3 created by Volker Bandke vbandke@bsp-gmbh . com
TK4- update by Juergen Winkelmann winkelmann@éid.ethz.ch
see TKA-.CREDITS for complete credits




ADDRESS FSS Formatted Screen Services

Menus, Screens, Lists

Ve

VSAM KSDS support read and write VSAM records

-
ADDRESS LINK/LINKMVS/LINKPGM/ATTACH

B REXX/3 70 Call external programs
>

Added ADDRESS MVS Interface to certain REXX environments
Features as VSAM and EXECIO

part | 4

ADDRESS TSO Interface to the TSO commands, e.g.
LISTCAT, ALLOC, FREE, etc.

ADDRESS COMMAND
Interface to the Host system of your
MVS system. Typically Hercules or
VM370

If it blinks, logs, or sighs—REXX can interface it.



BREXX/370

Added
Features
part ||

TCP/IP Interface Building TCP servers as well as TCP clients

Interface to NJE38 communicating with other MVS and
CMS sites: messages and datasets

Operator Interface sending operator commands

OUTTRAP hijack write to terminal (say ...)

Receiving Master Trace Table events

Dynamic Dataset Service
CREATE/ALLOCATE/FREE/OPEN (new) Datasets

Create and execute REXX scripts on the fly

Global and Profile Variables read/write variables across
procedures

New REXX Functions many, many




e el
el

R —
——— e

The moment has come. It's s ime.
: = ‘. -
— E— ] C— ) lny awalts - szzzzzz

¥ _Hercules Version : 4.5.0.10820-SDL-DEV-g5198616
Host name ©oeitri

Host 0S5 Linux-4.4.0-210-generic #242-Ubuntu SMP Fri Apr 16 @9:57:56
Host Architecture : x86_64

Processors MP=2
LPAR Name HERCULES
Device number . 0:00C0

I T T

" R . P
222zz /,'.-'"" EEEEHH s wes }
Lde ) Y-, (e e rwn |
(e

The MVS 3.8j
Tur{n)key System . e .

TK3 created by Volker Bandke vbandke@bsp-gmbh . com
TK4- update by Juergen Winkelmann winkelmann@éid.ethz.ch
see TKA-.CREDITS for complete credits




MVS 3.8

special

functions




BREXX MVS Integration Overview

BREXX includes extensions
tailored to IBM MVS systems,
adding powerful scripting
capabilities for system
interaction, dataset access,
security, and console control.

e Access to datasets (PS, PDS),
directory entries, record
counts

* Use of SVCs and TSO console e Low-level ENQ/DEQ locking

commands I ERINUS

e Dynamic privilege control
and environment detection
(Hercules, VM/370)

e Integration with NJE, SMF,
RACF environments

45
If it can be called, piped, or poked—BREXX can handle it



BREXX/370 Array Extensions

BREXX vs. BREXX/370 — Variable Management

¢ Variables in BREXX are organized using a binary tree structure.
e While flexible, this approach introduces significant overhead in:

* Memory usage (due to metadata and pointer structures)

* Performance, especially during intensive iteration or when dealing with a large number of variables
¢ Each variable access requires tree traversal, slowing down execution.

BREXX/370:

e Variables in BREXX are organized using a binary tree structure.
¢ Introduces native array support, allowing direct indexed access to data.
¢ Arrays eliminate the need for binary tree traversal, providing:

» Faster variable access

¢ Reduced memory overhead

e Improved performance in highly iterative or data-heavy tasks

v Key Advantage: Arrays in BREXX/370 significantly optimize storage and execution speed,

making it more efficient for large-scale or performance-critical REXX applications.

If I have time to press Enter, it’s not fast enough.



High-Performance Array Support in BREXX

BREXX introduces internal
string, integer and float
arrays, bypassing traditional
REXX variable pools for faster
data processing.

e Integer and Float arrays:
optimized for numeric
lookup, manipulation, and
batch updates

e Arrays are stored outside
the normal symbol table /
variable pool

e Operations supported: sort,
search, batch load/store

e Designed for MVS
workloads and system-level
scripting efficiency

e String array: ‘sarray[]’, with
indexes via ‘sindex” and
‘sarrayhi[]

¢ Greatly reduces CPU load
for large-scale operations vs.
stem variables

47



sarray[]: High-Speed String Arrays

‘sarray[] is a fast, low-overhead string array structure designed for heavy-duty scripting.
e Defined as ‘char *sarray[sarraymax]’, outside normal REXX variable pools

e Directly accessed by index, avoiding stem variable performance limits

e ‘sarrayhi[] tracks the highest index used in each array

e Optional ‘sindex[]" provides sorted views or lookup optimization
e Used for fast batch processing, logging, or system dataset parsing

¢ |deal for MVS workloads where classic REXX is too slow




sarray[]: Memory Management

e SCREATE — Create a new sarray instance
e SRESIZE — Resize an existing sarray

e SFREE — Free the memory associated with sarray

e SARRAY — Return info/status of an sarray




sarray[]: Element Access & Assignment

e SSET — Set a value at a specific index
e SGET — Retrieve a value from a specific index

e SSUBSTR — Get a substring from an entry

e SWORD - Extract a word from an entry

e SLSTR — Convert list-style string into sarray




RFEEDIT BREXX.V2R5M3.SAMPLES($S0RT) - 1.00

Command >
R K K K K ***********Autosave************************************ TOp of Data KEEEEE

000001 smax=5000 /* Number of random entries */
000002

000003 * QuickSORT

000004

000005

000006 srt=setupArray('QuickSort")

000007 call slist srt,1,10

000008 elp=time('e')

000009 call SQSORT srt,"QUICKSORT"

000010 elp=Trunc(time('e')-elp,3)

000011 say "quicksort time "elp" seconds, items: "smax
000012 call slist srt,1,10

000013

000014 * ShellSORT

000015

000016

000017 srt=setupArray('ShellSort')

000018 call slist srt,1,10

000019 elp=time('e')

000020 call SHSORT srt,"SHELLSORT"

000021 elp=Trunc(time('e')-elp,3)

000022 say "shellsort time "elp" seconds, items: "smax
000023 call slist srt,1,10

000024
000025

000026

000027

000028

000029 setupArray:

000030 parse arg stype

@00031 srt=Screate(smax)

000032 do i=1 to smax

000033 call sset(srt,,right(RANDOM(Q@,10000).6,'0"')"' 'stype)
000034 end

000035 return srt




Example:
High-
Speed
sarray/[]
Access




STEM sort SARRAY sort

DO i=1 Sort done
‘ TO 5000... in 0,03 s

STEM sort: timeless in all the wrong ways.
SARRAY sort: so fast, you’ll need a new hobby.



sarray[]: Transformation & Modification

e SCHANGE —
Replace
occurrences of a
substring

e SREVERSE — e SSWAP — Swap
Reverse the order two entries by
of entries index

e SCOPY — Copy
one sarray to
another

e SINSERT — Insert a
new entry

e SCLC — Clear array
content

e SPASTE — Append
entries from
another source

e SDEL — Delete an
entry by index




sarray[]: Search & Selection

e SSEARCH — Search
for an entry

e SKEEP — Keep
matching entries

e SDROP - Drop
matching entries

[4

e SSELECT — Select
entries by pattern
or value

e SKEEPAND — Keep
entries matching
multiple conditions

55



sarray|]:
Sorting &
Counting

]

e SQSORT — Quick
sort for entries

e SHSORT - Shell
sort (likely stable)

e SCOUNT — Count
elements or
pattern matches



e el
el

R —
——— e

The moment has come. It's s ime.
: = ‘. -
— E— ] C— ) lny awalts - szzzzzz

¥ _Hercules Version : 4.5.0.10820-SDL-DEV-g5198616
Host name ©oeitri

Host 0S5 Linux-4.4.0-210-generic #242-Ubuntu SMP Fri Apr 16 @9:57:56
Host Architecture : x86_64

Processors MP=2
LPAR Name HERCULES
Device number . 0:00C0

I T T

" R . P
222zz /,'.-'"" EEEEHH s wes }
Lde ) Y-, (e e rwn |
(e

The MVS 3.8j
Tur{n)key System . e .

TK3 created by Volker Bandke vbandke@bsp-gmbh . com
TK4- update by Juergen Winkelmann winkelmann@éid.ethz.ch
see TKA-.CREDITS for complete credits




sarray[]: Set Operations

e SMERGE — Merge
sorted sarrays

e SINTERSECT —
Intersection of arrays

e SDIFFERENCE —
Difference (A not in B)

e SUNIFY — Remove
duplicates

58



sarray[]: Load & Store

e SWRITE — Write
sarray to file or

e SREAD — Load
sarray from file or

source target

e S2IARRAY —
* 5ZLL—Convert to e Convert to integer
linked list Y ooy

e SLIST — Return
sarray as a
stem/list

59



Exploring the Unexpected
Passion of Linear Algebra in
BREXX

| Came for
“I the Vectors,

Stayed for

the Drama




o

Why Matrix Operations
Matter

.|.

Matrix Operations in BREXX are foundational tools for implementing many statistical and analytical

methods:

Correlation Analysis — based on covariance and matrix algebra

Regression Analysis — uses matrix inversion and multiplication

Factor Analysis — relies on eigenvalue decomposition and matrix transformations

Principal Component Analysis (PCA) — transforms data into eigenvector space

Enables advanced statistical modelling within REXX scripts

61




e el
el

R —
——— e

The moment has come. It's s ime.
: = ‘. -
— E— ] C— ) lny awalts - szzzzzz

¥ _Hercules Version : 4.5.0.10820-SDL-DEV-g5198616
Host name ©oeitri

Host 0S5 Linux-4.4.0-210-generic #242-Ubuntu SMP Fri Apr 16 @9:57:56
Host Architecture : x86_64

Processors MP=2
LPAR Name HERCULES
Device number . 0:00C0

I T T

" R . P
222zz /,'.-'"" EEEEHH s wes }
Lde ) Y-, (e e rwn |
(e

The MVS 3.8j
Tur{n)key System . e .

TK3 created by Volker Bandke vbandke@bsp-gmbh . com
TK4- update by Juergen Winkelmann winkelmann@éid.ethz.ch
see TKA-.CREDITS for complete credits




Matrix Operations: Creation & +
Access

MCREATE — Create a new matrix
MGET — Retrieve value at a given
row/column

MSET — Set value at a given row/column
MDELCOL — Delete a column
MDELROW — Delete a row
63




e MCOPY — Copy
one matrix to
another

e MTRANSPOSE —
Matrix Transpose matrix (flip

. rows/columns)
Operations:

Manipulation L

Normalize data across
rows or columns

e MINVERT — Invert
the matrix (if square
and invertible)




Matrix
Operations:
Arithmetic

e MMULTIPLY — Multiply two
matrices

e MADD — Add two matrices

e MSUBTRACT — Subtract matrices

e MPROD - Element-wise product

e MSQR — Square each element

e MSCALAR — Multiply matrix by a
scalar




Mathematical formulas using matrix operations
R = (vD)'C(vD)!
Linear Al ge bra: where: C = Covariance matrix

D = Diagonal matrix of variances
D= diag(Var(X)
Correlation & Linear regression coefficients 3:
Regression B=XTX)' X"
where: X = Matrix of input variables (predictors)

Y = Output vector (target variable)
B = vector of regression coefficients

66




And now, before
we're escorted
out by an angry
mob with
torches, we shall
summarise... and
leg it.




BREXX/370

Summary

</>

(L

68

Rooted in Proven Design

Built upon the original BREXX interpreter
by Vasilis Vlachoudis — a compact,
portable implementation of REXX that set
the foundation.

Adapted for Mainframe Environments
BREXX/370 brings this design to the IBM
MVS 3.8 platform, extending core
functionality while remaining true to its
architectural simplicity.

System-Level Integration

Deep integration with MVS subsystems:
VSAM, NJE38, formatted screen 1/O, and
more — enabling seamless scripting for
complex system interactions.

Expanded Capabilities

Enhanced with array support, embedded
functions, and matrix operations —
enabling data analysis, transformation,
and advanced scripting.

Sustainable and Documented
Continuously maintained, with full
documentation, source availability, and a
transparent development approach.

Same Language, New Ground
BREXX/370 continues the REXX tradition:
readable, robust, and remarkably
adaptable — now fully at home on the
mainframe.



The BREXX/370
Development
Team

ike & Peter

SOMMIN ONEHMIES




brexx370~stubbornly portable, surprisingly powerful
REXX interpreter for IBM maintrames

SYNOPSIS
brexx370 [--retro] [--—-nostalgial [--macro=1love]
script.rexx

DESCRIPTION
BREXX /370 brings the minimalist elegance of BREXX to
the world of MVS 3.8 and beyond.
It interprets REXX scripts with speed, style, and

and thanks suspiciously few lines of node.

Originally designed for platforms no one admits using

for a” the anymore, it now runs on systems your grandchildren
won't believe ever existed.

FEATURES
« Inline compilation using _CodeAddByte () - because
we could
« Controt flow patching via CODEFIXUP macros -
trust the process
« Parses like it's 1889, runs like it's 2025
«No AST. No regrets.

«May cause feelings of nostalgia
« Cannot compite your life decisions
« Occasionally too efficient for its own good

AUTHOR Written by people who looked at IBM’s architecture




	Folie 1
	Folie 2: “REXX reads like English,  runs like C,  and debugs like a dream”
	Folie 3: Mike Großmann by day Beta Systems Software AG  by night:  co-migrator, chaos-tamer,  and the reason BREXX/370 still talks to us.
	Folie 4: BREXX Revisiting the Origins 
	Folie 5: Vasilis Vlachoudis  Author of BREXX
	Folie 6: From BREXX to BREXX/370: The Journey 
	Folie 7: From BREXX to BREXX/370: The Journey 
	Folie 8: From BREXX to BREXX/370: The Journey 
	Folie 9: From BREXX to BREXX/370: The Journey 
	Folie 10: From BREXX to BREXX/370: The Journey 
	Folie 11: From BREXX to BREXX/370: The Journey
	Folie 12: Why Mainframes Still Matter
	Folie 13: Why Mainframes Still Matter
	Folie 14: Performance: It’s Not Apples to Apples  It’s not about clock speed — it’s about what the system is built to do 
	Folie 15: Performance:  It’s Not Apples to Apples
	Folie 16: Mainframes: The Central Point of Control
	Folie 17
	Folie 18: From BREXX to BREXX/370 The Journey
	Folie 19: From BREXX to BREXX/370: the Journey
	Folie 20: Performance MVS % Windows
	Folie 21: REXX Performance Comparison
	Folie 22
	Folie 23
	Folie 24
	Folie 25: Where time is consumed  (CALGRIND)
	Folie 26:         Now Off-Road 
	Folie 27: BREXX‘s Distinct Characteristics   
	Folie 28: Pre-compiled % Compiled   BREXX approach   
	Folie 29
	Folie 30: CREXX Compilation Process 
	Folie 31
	Folie 32
	Folie 33: BREXX Layer Concept
	Folie 34: BREXX Layer Concept
	Folie 35: BREXX/370  Embedded Kernel Functions
	Folie 36: Embedded REXX Functions  
	Folie 37: Examples of Embedded Kernel Functions
	Folie 38: Embedded Kernel  Functions   Design Advantages
	Folie 39: Example LISTVOLS volumes of a MVS System 
	Folie 40
	Folie 41: BREXX/370  Added Features  part I
	Folie 42: BREXX/370   Added Features  part II
	Folie 43
	Folie 44: MVS 3.8  special functions 
	Folie 45: BREXX MVS Integration Overview
	Folie 46: BREXX/370 Array Extensions BREXX vs. BREXX/370 – Variable Management 
	Folie 47: High-Performance Array Support in BREXX
	Folie 48: sarray[]: High-Speed String Arrays
	Folie 49: sarray[]: Memory Management
	Folie 50: sarray[]: Element Access & Assignment
	Folie 51: Example: High-Speed sarray[] Access
	Folie 52: Example: High-Speed sarray[] Access
	Folie 53: STEM SORT
	Folie 54: sarray[]: Transformation & Modification
	Folie 55: sarray[]: Search & Selection
	Folie 56: sarray[]: Sorting & Counting
	Folie 57
	Folie 58: sarray[]: Set Operations
	Folie 59: sarray[]: Load & Store
	Folie 60: I Came for the Vectors, Stayed for the Drama
	Folie 61: Why Matrix Operations Matter
	Folie 62
	Folie 63: Matrix Operations: Creation & Access
	Folie 64: Matrix Operations: Manipulation
	Folie 65: Matrix Operations: Arithmetic
	Folie 66: Linear Algebra:   Correlation & Regression
	Folie 67: And now, before we're escorted out by an angry mob with torches, we shall summarise… and leg it.
	Folie 68: BREXX/370 — Summary
	Folie 69: The BREXX/370  Development Team   Mike & Peter  
	Folie 70: So long, and thanks for all the STEMs!

